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Introduction

A central questions of astroparticle physics - source and propagation of cosmic rays.
Knowing the cosmic ray composition is the key for understanding the CR puzzles,
(as the Knee and the Ankle)

Above 10 eV, primary cosmic rays particles are detected via air showers- determination
of their energy and mass relies on the modeling of hadronic interactions.
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Introduction

Considering the underlying theory entering the models, almost all measurements at
colliders are relevant for understanding of very high energy cosmic ray interactions.

- parton densities, low-x dynamics and saturation, jets, tfransition between hard and
soft regimes, heavy flavour production, forward hadron production,... are important
for the basic structure of the models

Shower development dominated by forward, soft interactions. Forward
measurements are of the greatest importance for shower development

The key measurements are :

-total cross section,

-multiplicity,

-forward particle (baryons, n°) spectra;

X =E/E , peam (~ elasticity variable =Emax/Etot used by CR)
-antibaryon production,
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Introduction

Good cooperation of Particle physics and Cosmic Ray physicists |
A session dedicated during HERA-LHC workshop, stimulating discussions,
60 pages contribution to proceedings (DESY-PROC-2009-02) .
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Abstract

When particle physic started, cosmic ray were used as source of new
particles. Nowadays particle physic 1s a fundamental key to understand
the nature of the very high energy cosmic rays. Above 10'* eV, primary
cosmuc rays are detected via air showers whose development strongly
rely on the physic of the forward region of hadronic interactions as
tested in the HERA and LHC experiments. After an introduction on
air shower phenomenology, we will review how HERA and LHC can
constramn the physic used both in hadronic mteraction model, or for
photon or neutrino primaries.

1 Physics questions and problems
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HERA- the QCD machine
(1992-2007)
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Forward baryons at HERA

e
e
/ Current
- Jet

N\
/ Proton

— .
\__/ fragmentation
N\ T

ep collisions - a clean environment to study the proton fragmentation

Significant fraction of ep scattering events contains in the final state a leading
proton or neutron which carry a substantial portion of the energy of the incoming
proton: e+p 2> e+n+X or e+p+X
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Forward detectors at HERA

Iy
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*FPS/VFPS (H1); LPS (ZEUS) - forward proton spectrometers (Roman Pots) , at
z=24..220m from interaction point; measure scattered protons with x =E/Ep =
~0.3+0.9 (vertical pots), ~0.85+1 (horizontal pots)

= FNC - forward neutron calorimeters- 105m from interaction point. Neutral
particles (neutrons, photons) scattered at angle <0.8mrad are within the FNC

acceptance
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Forward baryons at HERA

Leading forward particles are produced at a very small angles from the fragmentation
of proton remnant or from the exchange mechanism (Pomeron, Reggeon, n+,1° p,...)

e’ (k) s
()
: ﬁ“; X(p,)
T o

p’n (PDJ p

p.n
o(ep—> eNX) =, (x,,t) x o(en—e'X)

Leading baryon variables:
X =E, g/E, pion flux

—(n.n )2
t=(P-PLg) cross section of en scattering

Many results are presented by H1 and ZEUS Collaborations on forward neutron and proton
production in DIS, photoproduction, events containing jets or charm in the final state.

(more details about in my talk at this conference)
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Forward Protons: Cross section vs x, and p+ slope
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What did we learn from forward baryons
at HERA ?

¢ standard fragmentation MC models don't

describe the data out of the diffractive peak

 good description by exchange model
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Forward Neutrons: Cross section vs x, and p+ slope
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Hadronic interaction models for Cosmic Rays

Primary particle

Xmax

Armen Bunyatyan

Slant depth

\J

Shower size ]

{ Shower startup

! Shower cascade

The Earth's atmosphere acts as a giant calorimeter for

high energy CR particle. Experiments can measure only
the products of hadronic shower.

The hadronic interaction models needed to estimate the
primary energy of cosmic ray.

In accelerators the incoming particle energy is known.

If the hadron production in the proton fragmentation region
is ~independent of the type of interacting particle, e.g. of
the photon virtuality Q? for ep scattering, then the models
can make predictions for the accelerator energies, which
can be compared to the measurements.

High-energy models: (R Engel, HERA-LHC workshop)
* DPMJET IL.5 and IIT (Ranft / Roesler, Engel, Ranft)

* neXus 2 and 3 (Drescher, Hladik, Ostapchenko, Pierog, Werner)
- EPOS 1.6, 1.9 (Pierog, Werner)

* QGSJET 01 and IT (Kal/mykov, Ostapchenko)
« SIBYLL 2.1 (Engel, Fletcher, Gaisser, Lipari, Stanev)
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Forward particle spectra vs models for cosmic rays

elasticity distributions: (T.Pierog,R.Engel)
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= data at low energy (fixed target experiment)
= extrapolation tested with HERA data

Comparison of HERA data with the MC models used for cosmic ray physics:
- the HERA data discriminate between the models and contribute to the model tuning
- reasonable agreement between the measurements and the models (after tuning to

these data l)
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Forward particles at HERA and models for cosmic rays
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Forward neutron measured energy distribution compared to CR models
— HERA data sees large difference between the predictions,

- none of models describe data well (new EPOS 1.99 not bad)

- room for improvement
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Neutral Particle measurements in the FNC

HERA can further contribute to the understanding of high energy cosmic rays
We measure the differential distributions of x_and p, for protons, neutrons and photons, in
the photoproduction and DIS regimes

The measurements can be made also as a function of proton beam energy
(The last 3 months HERA was running with 460 GeV and 575 GeV protons.)

Energy distributions of electromagnetic (photons) and hadronic (neutron) clusters in H1-FNC
at tree different proton beam energies (920, 575 and 460 GeV).
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Scaled flux E*° J(E) (m?sec'sr'eV'?)
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LHC and Cosmic Rays

Equivalent c.m. energyN's,, (GeV)

10

10°

* PROTON

HE 4 H @

/

VR %ﬂg‘%—%‘

T T TTTTT] T T T TTTIT]
KASCADE (QGSJET 01)

KASCADE (SIBYLL 2.1)

KASCADE-Grande (prel.)

Akeno

the knee

LHC

LHCE p-p)

Tevatron (p-p)

e Auger 2007

the ankle

T T T 1177
¥ HiRes-MIA

Energy

1015 101?

HERA, LHC and Cosmic Rays

1018
(eV/particle)

LHC - equivalent to E,=10'7eV

LHC data will reduce uncertainties
from extrapolations from SpS,
HERA, RHIC, Tevatron to higher

energy and the 6ZK limit




LHC and Cosmic Rays
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LHC minimum bias measurements: multiplicity distributions
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Forward neutral particles at LHCf
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Interpretation of Cosmic Ray observation data in 10'°-102%eV depends on the
interaction model used in the analysis. Precision of elemental composition
analyses limited by modeling of hadronic interactions and depends on particle
physics measurements

HERA provides an equivalent of a 5:10!3ev photon beam on a stationary proton target
- very useful input for models of CR interactions with matter
- a wealth of measurements of forward baryon production:
important for an improved theoretical understanding of the proton fragmentation
-~ more measurements useful for CR can be provided on forward neutrons and photons
(still HERA data has the highest available energy)

LHC is equivalent to 107eV proton beam

> LHC data will reduce uncertainties from extrapolations from SpS, HERA, RHIC,
Tevatron to the energies beyond 108ev

- The forward detectors are crucial to exploit physics potential
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