Exclusive Higgs production in a triplet scenario

Based on Chaichian, Hoyer, Huitu, Khoze, Pilkington: JHEP05 (2009) 011

EDS '09, July 4, 2009

Outline: Introduction **General Higgs representations** A model with $\rho = 1$ - Constraints on the parameters **Central exclusive production Event generation and backgrounds Doubly charged Higgs bosons Conclusions**

Introduction

- In the standard model one Higgs doublet
- In extensions, typically more than just one doublet
 - In MSSM: two doublets
 - In models with neutrino seesaw often triplets (also in models with composite Higgs, in little Higgs models)
- In such extensions typically charged scalars occur
- Many studies on singly or doubly charged scalars
- Charged scalars may be heavier than the neutral ones

useful to find ways to determine the multiplet from the neutral Higgs

General Higgs representations

Gauge boson masses from with

$$L_{kin} = \sum_{k} \left(D^{\mu} \phi_{k} \right)^{*} \left(D_{\mu} \phi_{k} \right) + \frac{1}{2} \sum_{i} \left(D^{\mu} \xi_{i} \right)^{T} \left(D_{\mu} \xi_{i} \right)$$

with $D_{\mu} = \partial_{\mu} + ig W_{\mu}^{a} T^{a} + \frac{Y}{2} g' B_{\mu}$:
 $m_{Z}^{2} = \left(g^{2} + g'^{2} \right) \sum_{i} T_{3i}^{2} v_{i}^{2}, \ m_{Z}^{2} = g^{2} \sum_{i} T_{3i}^{2} v_{i}^{2}$

 Doublet VEV decreases, when several representations have nonvanishing VEVs and contribute to the gauge boson masses • Left-handed fermions are in doublets. If doublet VEV decreases, the Yukawa coupling increases to generate the fermion mass: $m_f = y_f v_{doublet}$

the production cross section of Higgs through the top quark loop and in the branching ratio to fermions enhances.

• Restriction to higher representations from the electroweak ρ - parameter:

$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{\sum_{T,Y} \left[4T(T+1) - Y^2 \right] \left| V_{T,Y} \right|^2 c_{T,Y}}{\sum_{T,Y} 2Y^2 \left| V_{T,Y} \right|^2} \approx 1$$

 $(1, (T,Y) \in \text{complex representation})$

$$V_{T,Y} = \langle \phi(T,Y) \rangle, \ c_{T,Y} = \begin{cases} \frac{1}{2}, \ (T,Y) \in \text{real representation} \end{cases}$$

EDS '09, July 4, 2009

$$\rho = 1 \longrightarrow (2T+1)^2 - 3Y^2 = 1$$

Thus doublets $\left(T = \frac{1}{2}, Y = \pm 1\right)$ can be added without problems with ρ .

For the other representations, one has to finetune the VEVs to produce ρ =1. This may be motivated from other considerations.

Electroweak ρ parameter is experimentally $\rho - 1 = 0.0002_{-0.0009}^{+0.0024}$ constraints on general Higgs representations; In the standard model, $\rho = 1$ at the tree level. The radiative corrections at $m_H = 2m_W$ give $\rho - 1 = -0.00078 + (4-loop and higher corrections)$

A model with ρ = 1

Georgi, Machacek, Nucl.Phys. B 262 (1985) 463.

• In Georgi-Machacek model triplets $\xi_{Y=0}$ and $\chi_{Y=2}$

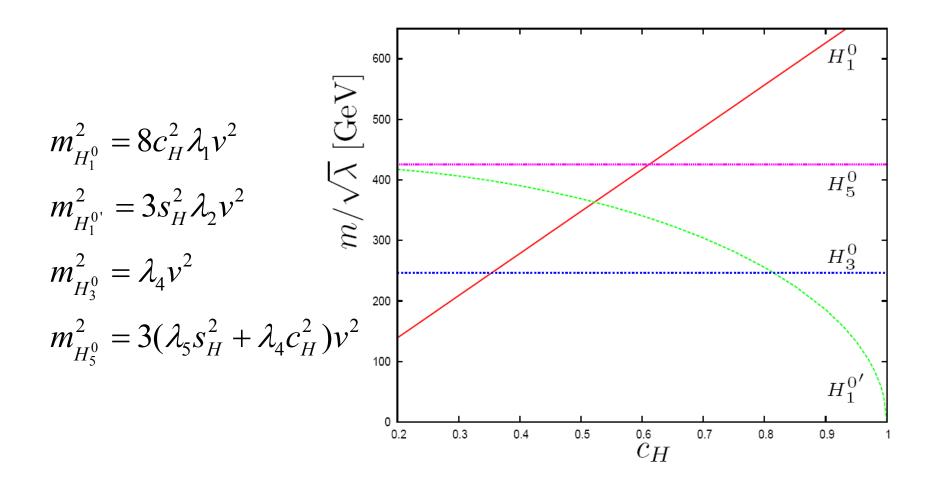
$$oldsymbol{\phi} = egin{pmatrix} oldsymbol{\phi}^{0*} & oldsymbol{\phi}^{+} \ oldsymbol{\phi}^{-} & oldsymbol{\phi}^{0} \end{pmatrix}, \hspace{0.2cm} \chi = egin{pmatrix} \chi^{0} & \xi^{+} & \chi^{++} \ \chi^{-} & \xi^{0} & \chi^{+} \ \chi^{-} & \xi^{0} & \chi^{+} \ \chi^{--} & \xi^{0} & \chi^{+} \ \chi^{--} & \xi^{-} & \chi^{0*} \end{pmatrix} \hspace{0.2cm} \phi^{-} = -igl(\phi^{+}igr)^{*}, \hspace{0.2cm} \chi^{--} = igl(\chi^{++}igr)^{*}, \hspace{0.2cm} \xi^{-} = -igl(\xi^{+}igr)^{*}, \hspace{0.2cm} \xi^{0} = igl(\xi^{0}igr)^{*} \end{pmatrix}$$

• Here
$$\left\langle \phi^{0} \right\rangle = \frac{a}{\sqrt{2}}, \left\langle \chi^{0} \right\rangle = \left\langle \xi^{0} \right\rangle = b,$$

• Define
$$c_H = \frac{a}{\sqrt{a^2 + 8b^2}}, \ s_H = \frac{8b}{\sqrt{a^2 + 8b^2}}, \ v^2 = a^2 + 8b^2$$

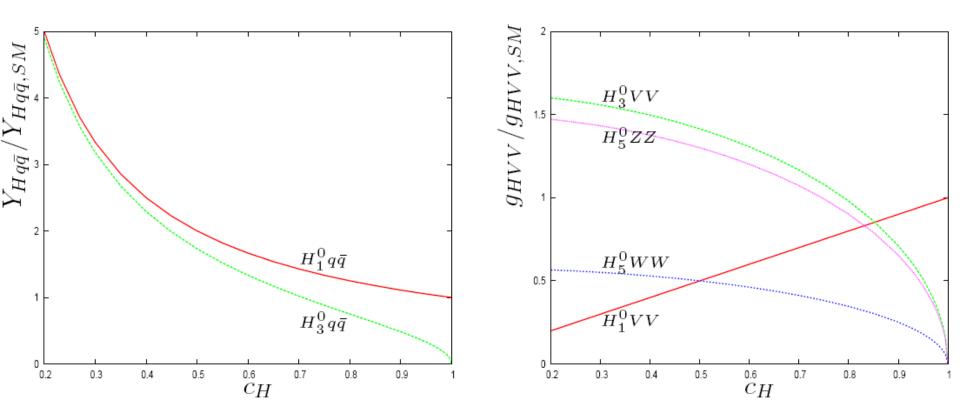
EDS '09, July 4, 2009

Katri Huitu, University of Helsinki and HIP

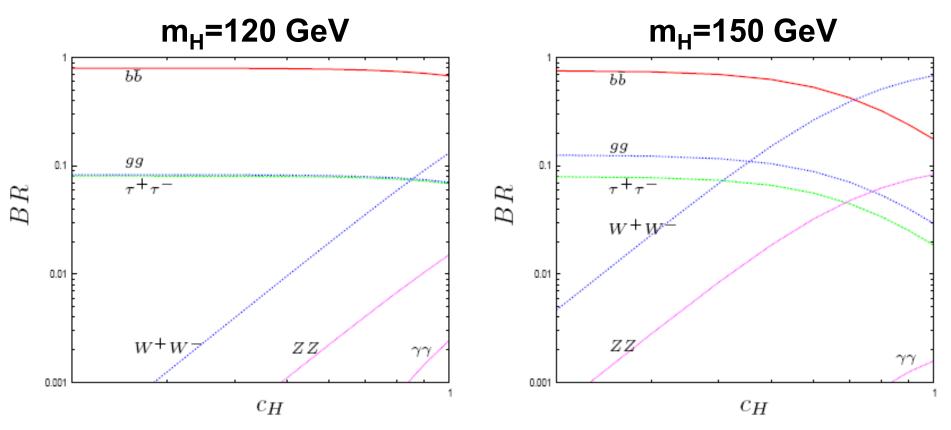

7

Potential of the model is

$$V = \lambda_1 (\operatorname{Tr} \phi^{\dagger} \phi - c_H^2 v^2)^2 + \lambda_2 (\operatorname{Tr} \chi^{\dagger} \chi - \frac{3}{8} s_H^2 v^2)^2 + \lambda_3 (\operatorname{Tr} \phi^{\dagger} \phi - c_H^2 v^2 + \operatorname{Tr} \chi^{\dagger} \chi - \frac{3}{8} s_H^2 v^2)^2 - \lambda_4 \left(\operatorname{Tr} \phi^{\dagger} \phi \operatorname{Tr} \chi^{\dagger} \chi - 2 \sum_{ij} \operatorname{Tr} (\phi^{\dagger} \tau_i \phi \tau_j) \operatorname{Tr} (\chi^{\dagger} t_i \chi t_j) \right) + \lambda_5 \left(3 \operatorname{Tr} (\chi^{\dagger} \chi \chi^{\dagger} \chi) - (\operatorname{Tr} \chi^{\dagger} \chi)^2 \right),$$


We take $\lambda_3 = 0$, $\lambda_4 = \lambda_5$

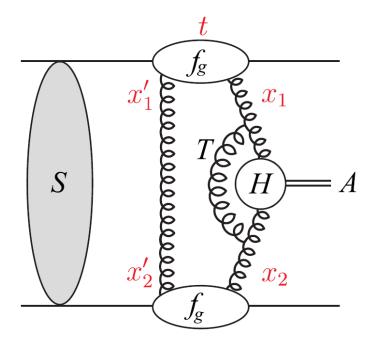
EDS '09, July 4, 2009


For small c_H or λ_1 , H_1^0 can be the lightest Higgs boson.

EDS '09, July 4, 2009

H₁⁰ becomes the standard model Higgs boson for vanishing doublet triplet coupling.

H₁⁰ branching ratios:


Coupling is increased by $1/c_H$ to fermions and suppressed by c_H to gauge bosons; width to $\gamma\gamma$ increases because of the top-loop, but the total width increases more

EDS '09, July 4, 2009

Constraints on the parameters

- Perturbativity $\longrightarrow \frac{gm_{top}}{2m_W c_H} < \sqrt{4\pi} \implies c_H > 0.2$
- Radiative corrections to Zbb vertex $c_H > 0.3$ with 99.9 C.L. for $m_{H_3} \sim 1$ TeV
- The mass limits for H₁⁰ from LEP: reduced production from Higgsstrahlung, but only small change in the decay branching ratio to *b*-quark pair
 m_H>73 GeV (40 GeV) for c_H=0.5 (0.2)

Central exclusive production

Main decay channels of the central system available: $b\overline{b}, W^+W^-, \tau^+\tau^-$

Possibility to study the Higgs coupling to *b*-quarks!

 $\sigma \propto \frac{\Gamma(H \to gg)}{m_H^3} BR(H \to b\overline{b})$

	$m_H = 120 \text{ GeV}$		$m_H = 150 \text{ GeV}$	
	$\Gamma(H \to gg)$	${\rm BR}(H \to b \overline{b})$	$\Gamma(H \to gg)$	$BR(H \to b\overline{b})$
$c_H = 0.2$	6.35×10^{-3}	0.80	1.22×10^{-2}	0.75
$c_{H} = 0.5$	1.01×10^{-3}	0.79	1.95×10^{-3}	0.63
$c_{H} = 0.8$	$3.97{ imes}10^{-4}$	0.74	7.63×10^{-3}	0.32
SM	2.49×10^{-4}	0.68	4.79×10^{-4}	0.18

Generator level cross section:

$\sigma_{H \to b \bar{b}} $ (fb)	$m_H = 120 \text{ GeV}$	$m_H = 150 \text{ GeV}$
$c_H = 0.2$	113.5	55.2
$c_{H} = 0.5$	18.0	7.4
$c_H = 0.8$	6.6	1.5

EDS '09, July 4, 2009

Event generation and backgrounds (by ExHuMe)

Main backgrounds:

- Central exclusive $b\overline{b}$ production
- Central exclusive gg production with gluon misidentification (1.3 % for b-tagging efficiency of 60 %)
- Overlap backgrounds
 - important for large number of pp interactions in bunch crossings;
 - 3-fold coincidence: two soft events pp→pX, with in acceptance of forward detectors and inelastic hard scatter pp→X (vertex matching)

In simulation central mass 80 GeV < M < 250 GeV

EDS '09, July 4, 2009

Experimental cuts

(following Cox, Loebinger, Pilkington, JHEP 0710 (2007) 090)

di-jet mass fraction R_i

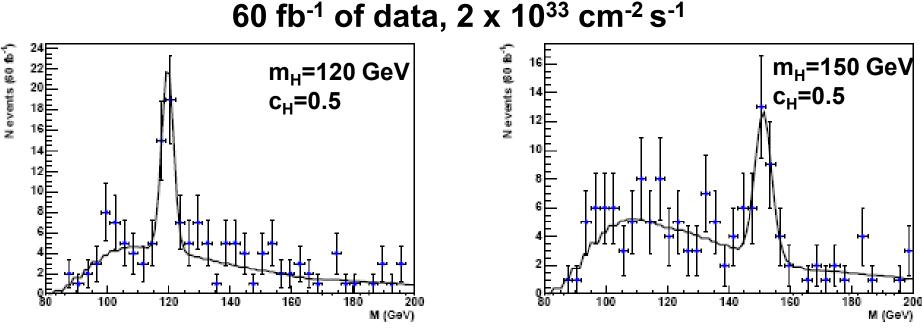
$$0.85 \leq R_j = \frac{2E_T^1}{M} \cosh(\eta_1 - y) \leq 1.1$$

- rapidity of central system same as calculated from the jets $\Delta y = \left| y \left(\frac{\eta_1 + \eta_2}{2} \right) \right| \le 0.06$
- di-jets back to back in azimuth

 $|\pi - \Delta \phi| \le 0.15,$

less charged tracks in signal than in background

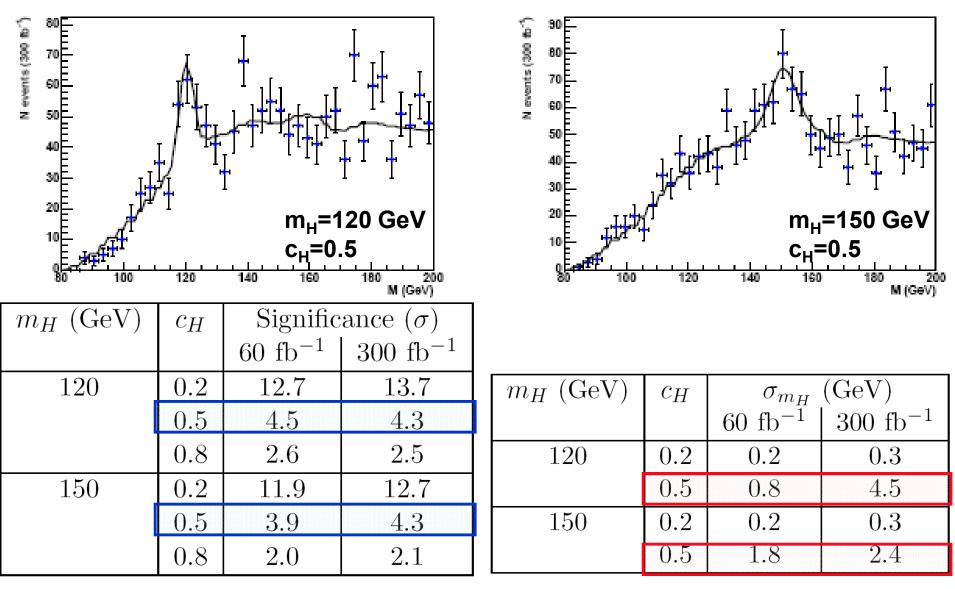
Tagging of forward protons:


at 220 m and at 420 m in either side of the interaction point: Symmetric tagging: both protons detected at 420 m Asymmetric tagging: one proton at 420 m and one at 220 m Accuracy of time of flight measurement from the interaction point: 10 ps

Signal and background cross sections with m_H =120 GeV, c_H =0.5

Generator	Process	$\sigma_{420-420}$ (fb)	$\sigma_{420-220}$ (fb)
ExHuME	$H \to b\overline{b}$	0.53	0.28
	$b\overline{b}$	0.53	0.27
	gg	1.08	0.91
Overlap (L)	$b\overline{b}$	0.07	0.09
Overlap (H)	$b\overline{b}$	11.0	13.7
Total bgrd (L)		1.68	1.27
Total bgrd (H)		12.6	14.9

EDS '09, July 4, 2009


Various triggering strategies including jet with $E_T > 40$ GeV and proton in a detector at 220 m; jets with $E_T > 40$ GeV and use of HLT with in time protons; muon in the event

Signal peaked at m_{H} . The background evenly distributed in the range 80 GeV < M < 250 GeV.

EDS '09, July 4, 2009

300 fb⁻¹ of data, 10³⁴ cm⁻² s⁻¹

EDS '09, July 4, 2009

Doubly charged Higgs bosons

- In the triplet model also a very interesting doubly charged Higgs boson.
- Possible production method:

 $pp \to p \oplus H^{{}^{++}}H^{{}^{--}} \oplus p$

- H⁺⁺ → W⁺W⁺, W⁺H⁺, H⁺H⁺, I⁺I⁺ :standard e, μ trigger strategies
- Possible to study doubly charged particles up to ~300 GeV (cross section ~0.3 fb)
- Although the mass range is smaller than in the process $pp \rightarrow H^{++}H^{--}X$, the background is easier and mass measurement more accurate.

Conclusions

• For higher Higgs representations the doublet couplings are enhanced

With forward processes possible to study the representation using the neutral Higgses

- The forward production complementary to the usual one
- In the triplet model with ρ = 1: c_H < 0.5, 120 GeV < m_H < 150 GeV
 H₁⁰ observed with 4σ or better, m_H measurement better than 2 GeV for low luminosity