<u>Central Exclusive Production in CDF</u> Mass > 5 GeV (Jim Pinfold's talk for Mass < 5 GeV) Mike Albrow, Fermilab

$$\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$$

$$\gamma + IP \rightarrow Y(1S), Y(2S), Y(3S), Z(?)$$

$$IP + IP \rightarrow \gamma\gamma$$

Introduction

- e+e- Mass 10 40 GeV (and $\gamma\gamma$) ... not new, a brief reminder
- e+e- and μ+μ- Mass 40 100 GeV, and Exclusive Z search (new PRL)

μ+μ- Mass 8 – 40+ GeV, Upsilons Y photoproduction, χ_b ?(prelim.)

Some LHC-relevant comments

Mike Albrow

Exclusive production in CDF: high mass

Introduction

Central Exclusive Production

$$p + \overline{p} \rightarrow p + X + \overline{p}$$

where X is a simple state fully measured, and <u>no</u> other particles produced. (Cannot detect p/pbar, down beam pipe, but BSC $\rightarrow \eta = 7.4$ empty)

Motivation:

In CDF, sophisticated tests of QCD with large rapidity gaps Δy Looking forward to LHC: $X = h, H, W^+W^-, l^+l^-$ Interesting examples \rightarrow

If see h, H : Mass, width, spin J, C = +1, Couplings H – gg, in a unique way, even if e.g. $h(140) \rightarrow b\bar{b} \& H(150) \rightarrow b\bar{b}$ 2

Mike Albrow

Exclusive production in CDF: high mass

CDF Forward Detectors (see Goulianos talk on Tuesday for more details)

Mike Albrow

FORWARD PHYSICS WITH RAPIDITY GAPS AT THE LHC

arXiv:0811.0120

Michael Albrow¹, Albert De Roeck², Valery Khoze³, Jerry Lämsä^{4,5}, E. Norbeck⁶, Y. Onel⁶, Risto Orava⁵, and M.G. Ryskin⁷ Sunday, November 09, 2008

Take 0-bias events (Essential!) {1} = prob no interaction {2} = prob >= 1 interaction Take hottest PMT of 8 BSC1 Plot log max ADC for {1} and {2} Separates empty / not empty Repeat for all detectors Warm accessible vacuum pipe (circular – elliptical) Do not see primary particles, but showers in pipe ++ Simple scintillator paddles: **Gap detectors in no P-U events**

Mike Albrow

Exclusive production in CDF: high mass

A bit of history. LOI to FNAL PAC:

CDF/PHYS/EXOTIC/CDFR/558 hep-ex/0511057 March 26, 200 A Search for the Higgs Boson using Very Forward Tracking Detectors with CDF. M.G.Albrow[†],¹ M.Atac,¹ P.Booth,² P.Crosby,³ I.Dunietz,¹ D.A.F. B.Heinemann,² M.Lancaster,³ R.Lauhakangas,⁵ D.Litvintsev,¹ T S.Marti-Garcia,² D.McGivern,³ C.D.Moore,¹ R.Orava,^{4,5} A.Rostovtsev, ш S. Tapprogge,⁵ W. Wester,¹ A. Wyatt,³ K. Österberg.⁴ It was great! So why was it not pursued? Most people thought it was hopeless And they were probably right! (for Tevatron ... not for LHC)

35	Quartz + MCP-PMT									
)1										
в	Timing and Trigger counters	7								
	1 Scintillation Counters	7								
	2 Fast Timing Cerenkovs (FTC)	7								
\mathbf{C}	Modifications to the Tevatron	8								
D	Running Conditions and Triggers	10								
Exclusive Higgs Boson Production 10										
Α	$H \rightarrow b ar{b}$	22								
в	$H ightarrow au^+ au^-$	24								
\mathbf{C}	$H \rightarrow WW^{(*)}$	26								
D	H ightarrow ZZ	28								
Exclusive $\gamma\gamma$ Production 28										
Be	yond the Standard Model	31								
Α	Extra generations	31								
в	Extended Higgs models, CP-odd scalars	31								
\mathbf{C}	Top-Higgs	32								
D	Lightest SUSY particle	32								
Е	Color Sextet Quarks	33								
\mathbf{F}	Graviton emission	33								
G	Micro Black Holes, MBH	35								

Mike Albrow

Exclusive production in CDF: high mass

σ(p+H+p) was uncertain by a factor > 1000 in 2000

Mike Albrow

Exclusive production in CDF: high mass

$$\begin{array}{c} p+\bar{p} \rightarrow p+\gamma\gamma+\bar{p} \\ p+\bar{p} \rightarrow p+\chi_{c}+\bar{p} \\ p+\bar{p} \rightarrow p+\chi_{c}+\bar{p} \\ p+\bar{p} \rightarrow p+\chi_{b}+\bar{p} \\ p+\bar{p} \rightarrow p+JJ+\bar{p} \end{array}$$
Cleanest (no S.I.) but smallest σ
KMR: 38 pb in our box). 2+1 candidates
Clean, big σ :
Jim Pinfold's talk $d\sigma$
 $d\sigma$ ($\gamma=0$)~100 nb (KMRS)
Jim Pinfold's talk $d\sigma$
but M(c) small (non-pert) & hadron
More perturbative, smaller theory uncertainty
But $\sigma \sim 1/500^{\text{th}} \chi c$. Also BR's not known!
See next slide.

Big cross section, but least well defined (jets!) and largest background. ~ 100 pb for M(JJ) > 30 GeV

Mike Albrow

Exclusive production in CDF: high mass

Observation of Exclusive Electron-Positron Production in Hadron-Hadron Collisions

Mike Albrow

Search for Exclusive $\gamma\gamma$ Production in Hadron-Hadron Collisions

Search for Exclusive Z-Boson Production and Observation of High-Mass $p\bar{p} \rightarrow p\gamma\gamma\bar{p} \rightarrow pl^+l^-\bar{p}$ Events in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

- Exclusive Z production possible but σ (SM) = 0.3 fb [Phys. Rev. D78, 014023 (2008)]
- Detection would imply BSM physics much enhanced σ predicted by A.White [Phys. Rev. D72,036007]
- Final state identical to exclusive dilepton production.
- This "background" is also interesting: could be used to calibrate forward proton detectors [ξ(p) = s^{-1/2}∑p_T^ℓe^{-η_ℓ}].

Fractional momentum loss of p

[Some slides from Emily Nurse]

10

Mike Albrow

Exclusive production in CDF: high mass

Select $Z \rightarrow \ell \ell$ ($\gamma \gamma \rightarrow \ell \ell$) events:

- e⁺e⁻ or μ⁺μ⁻ pair with p₁^ℓ > 25(20) GeV
- require 82 < M_x < 98 (M_x > 40) GeV
- Dominated by non-exclusive Z production (σ ~ 250 pb).
- Require no other particles in the event.

- Require no additional reconstructed tracks.
- Cut on ΣE in each sub calorimeter:

CENTRAL EM and HAD; PLUG EM and HAD; MINIPLUG EAST and WEST

Mike Albrow

Exclusive production in CDF: high mass

CDF Run II Preliminary

Exclusivity cuts: Use 0-bias data (important!) Select events with no tracks, compare with $W \rightarrow lv$ in all different detectors

Choose cuts efficient for "noise" = "empty", inefficient for W events. Example: Central EM $\Sigma E < 0.35$ GeV Not same method as for other studies. More efficient, maybe more background

With 2.20(2.03) fb⁻¹in the electron(muon) channels:

Mike Albrow

All empty!

M reach Tevatron ~ HERA, LEP !

Mike Albrow

Exclusive production in CDF: high mass

Blois 2009 CERN

13

Dissociation "background"

4) $p\overline{p} \rightarrow p\gamma\gamma\overline{p} \rightarrow p\ell\ell\overline{p}$ events where the p or \overline{p} dissociates:

- Will only survive cuts if all dissociation particles have |η|>7.4 (edge of the BSC acceptance).
- LPAIR runs in inelastic modes to give expected cross section.
- Rockefeller Minimum Bias MC dissociates the p(p) to obtain η distribution of fragmented particles.
- We predict a background of 1.45 ± 0.61 events.

NB: These events are still (probably) $\gamma\gamma \rightarrow l+l$ and most detected in BSC = Beam Shower Counters

- BSC cuts required to reduce dissociation "background" (events where the p or p dissociates).
- Veto events if any BSC PMT has > 700 ADC counts. Mike Albrow Exclusive production in CDF: nign mass BIOIS 2009 CEKIN

Mike Albrow

Exclusive production in CDF: high mass

Results : exclusive Z limit

Combining the $\mu\mu$ and ee decay channels:

- 0 candidates
- 0.66 ± 0.11 background
- α×BR(l)×L_{eff} = 3.22 ± 0.38 pb⁻¹

Predictions: Standard Model:

Motyka and Watt, PRD 78, 014023 (2008) : $\sigma(Z,excl) = 0.3$ fb Goncalves and Machado, Eur.Phys.J. C 56, 33 (2008) : $\sigma(Z,excl) = 0.21$ fb Beyond Standard Model (Color sextet quarks): A.R.White, PRD 72, 036007 (2005): "much bigger" at LHC!

Mike Albrow

Exclusive production in CDF: high mass

All our dilepton measurements agree with QED: So what?

- It shows we know how to select rare exclusive events in hadron-hadron environment
- No other h-h cross section is so well known theoretically except Coulomb elastic.
 Possibly excellent Luminosity calibration at LHC e.g.
- Outgoing p-momenta extremely well-known (limited by beam spread). Calibrate forward proton spectrometers.
- 4) Practice for other γγ collisions at LHC:

 $\gamma\gamma \rightarrow W^+W^-, \widetilde{l}^+\widetilde{l}^-, \dots$

Luminosity calibration at LHC

4400 events in 500 pb⁻¹ with $M(\mu^+\mu^-) > 10$ GeV and $|\eta| < 2$

Exclusive production in CDF: high mass

 $\sigma(p\bar{p} \rightarrow p + \mu^{+}\mu^{-} + \bar{p})_{\text{QED}}$ vs. M(min) for different $|\eta|$ (max) at $\sqrt{s} = 1.96$ TeV, LPAIR

> Can "read off" cross section For any M_min or M-range, and eta(max).

Purely empirical fit (no physics, just convenient):

Mike Albrow

<u> Dimuons: Upsilon Region</u>

CDF Run II Preliminary

CDF Run II Preliminary

Mike Albrow

Exclusive Upsilon Y(1S) candidate

Run/Event: 204413/8549136

M~9.4 GeV

But we will allow P-U, (except for $\chi b \rightarrow Y + \gamma$ search) Maybe a few events ???

> Branching ratios for µ+µ- channels: Y(1s) 9.46 GeV : 2.5% Y(2s)[10.02 GeV] : 1.3% Y(3s)[10.36 GeV] : 1.8%

Mik Plugs, Miniplugs, CLC, BSC empty in CDF: high mass Blois 2009 CERN

e.g. A. Szczurek: arXiv:0811.2488

FIGURE 6. Distribution in rapidity of J/Ψ , Ψ' , Υ , Υ' (from top to bottom) for Tevatron (left panel) and LHC (right panel). The dashed line corresponds to calculation in the Born approximation and the solid line includes absorption corrections.

$$\frac{d\sigma}{dy}(y=0)Y(1S) \sim \frac{1}{500}\frac{d\sigma}{dy}(y=0)J/\psi$$

Mike Albrow

Exclusive production in CDF: high mass

PDG 2008 (latest):

 χ_b states are very poorly known!

χ**ьο**(1*P*) ^[f]

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$ J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31$ MeV

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	р (MeV/c)
$\gamma \Upsilon(1S)$	< 6	%	90%	391
$D^0 X$	< 10.4	%	90%	-
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.6	imes 10 ⁻⁴	4 90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	imes 10 ⁻¹	5 90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 5	$\times 10^{-4}$	4 90%	4846
$2\pi^+2\pi^-2\pi^0$	< 2.1	$\times 10^{-4}$	4 90%	4905
$2\pi^+ 2\pi^- K^+ K^-$	(1.1 ± 0)	$(0.6) \times 10^{-4}$	4	4861
$2\pi^+ 2\pi^- K^+ K^- \pi^0$	< 2.7	$\times 10^{-4}$	4 90%	4846
$2\pi^+ 2\pi^- K^+ K^- 2\pi^0$	< 5	$\times 10^{-4}$	4 90%	4828
$3\pi^+2\pi^-K^-K^0_S\pi^0$	< 1.6	$\times 10^{-4}$	4 90%	4827
$3\pi^+3\pi^-$	< 8	\times 10 ⁻¹	5 90%	4904
$3\pi^+3\pi^-2\pi^0$	< 6	imes 10 ⁻⁴	4 90%	4881
$3\pi^+ 3\pi^- K^+ K^-$	(2.4±1	$1.2) \times 10^{-4}$	4	4827
$3\pi^+3\pi^-K^+K^-\pi^0$	< 1.0	$\times 10^{-3}$	3 90%	4808
$4\pi^{+}4\pi^{-}$	< 8	imes 10 ⁻¹	5 90%	4880
$4\pi^+ 4\pi^- 2\pi^0$	< 2.1	\times 10 ⁻³	3 90%	4850

Perhaps: Dedicated 800 GeV p -Fixed target DPE experiment (χ-factory) ?23

Mike Albrow

Exclusive production in CDF: high mass

Predictions from Motyka and Watt arXiv:0805.2113

Phys.Rev.D78:014023,2008.

 $\frac{d\sigma}{dy}|_{y=0} (J/\psi) = (3.92 \pm 0.25(stat) \pm 0.52(syst) \text{ nb} (\text{CDF})$

Factor ~ 400

Other predictions:

- 12 +- 1 pb (Cox,Forshaw,Sandapan)
- ~12 pb (Klein & Nystrand)
- 0.8 5 9 pb

(Bzdak, Motyka, Szymanowski & Cudell)

HERA data little help: Resolution confuses Y1,2,3, low statistics

Mike Albrow

Exclusive production in CDF: high mass

Blois 2009 CERN

24

H1

HERA: e + p

Cross sections at HERA

Figure 2: A compilation of HERA data on exclusive vector meson production cross sections vs. W.

$$W = \sqrt{s(\gamma p)} = \sqrt{M_V^2 + M_p^2 + 2.M_V E_p}$$

~ 80 GeV (J/psi), 136 GeV (Y) in CDF, V at y=0

Mike Albrow

Exclusive production in CDF: high mass

Y and FP420 at LHC

Predictions from Motyka and Watt arXiv:0805.2113

Phys.Rev.D78:014023,2008.

Large uncertainty in extrapolation. No gap survival probability!

FP420 acceptance?

FIG. 8: Rapidity distributions for exclusive photoproduction of Υ mesons at the Tevatron and LHC. The "b-Sat" model predictions with $m_b = 4.5$ GeV are rescaled by a factor 2.96 to give optimum agreement with the HERA data [16, 17, 18]. Also shown is the result of a direct fit to the HERA data of the form $\sigma(\gamma p) \propto W^i$. No gap survival factor has been applied to these predictions.

$$p_{T1} = p_{T2} = 4.75 \,\text{GeV/c}; \ \eta_1 = \eta_2 = \eta$$

(most likely kinematics)

$$\xi_{\max}(p)$$
 vs. η
 $\xi_{\min}(p)$ is always much too small to see.
Fortunately each xi(p) is known

Mike Albrow

Exclusive production in CDF: high mass

Rate for Y @ LHC:

Rate
$$\sim \frac{d\sigma}{dy}$$
. $\Delta y.$ (BR $\rightarrow \mu^+\mu^-$). Acc. Eff.
 $\sim 100 \text{ pb} \times 2.0 \times 025 \times 0.25 \sim 1.25 \times 10^{-36} \text{ cm}^2$
 $\sim 5/\text{hour at L} = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Double-diffractive χ meson production at the hadron colliders

 χ_b at Tevatron and LHC

 χ_c predictions down by 1.45 (pdg width change)

V.A. $\operatorname{Khoze}^{a,b},$ A.D. $\operatorname{Martin}^{a},$ M.G. $\operatorname{Ryskin}^{a,b}$ and W.J. $\operatorname{Stirling}^{a,c}$

	Tevatron $_{\rm V}$	$\sqrt{s} = 2 \text{ TeV}$	LHC $\sqrt{s} = 14$ TeV		
	χ_c	χ_b	χ_c	χ_b	
$\frac{d\sigma_{\rm excl}/dy _{y=0}}{\sigma_{\rm excl}}$	$\frac{130}{650}$	$\begin{array}{c} 0.2 \\ 0.5 \end{array}$	$\frac{340}{3000}$	0.6	
$\frac{d\sigma_{\rm incl}/dy _{y=0}}{\sigma_{\rm incl}}$	13 70	$\begin{array}{c} 0.06 \\ 0.3 \end{array}$	$\frac{30}{200}$	$0.2 \\ 2$	

Complex spectrum of radiative decays to Y(1), Y(2):

Here just give DPE allowed states (J=0 >> J=2)

dσ/dy(KMRS,TeV) = 200 pb If BR = 4% (?) that's 8 pb -> γ+Y1 Cf ~ 10 pb for ds/dy(Y1)

 $d\sigma/dy(KMRS, LHC) = 600 \text{ pb}$ If BR = 4% (?) that's 24 pb -> γ +Y1 cf ~ 30 pb for ds/dy(Y1)
$$\begin{split} \chi_{b} & I^{G}J^{PC} = 0^{+}0^{++} \text{ and } 0^{+}2^{++} \text{ states}: \\ \chi_{b0}(9859) J &= 0: & \rightarrow \gamma Y(LS) < 6\%(\sim 3.5\%?); \quad p_{\gamma} = 391 \text{ MeV} \\ \chi_{b2}(9912) J &= 2: & \rightarrow \gamma Y(LS) = (22 \pm 4)\%, \quad p_{\gamma} = 442 \text{ MeV} \\ \chi_{b0}(10232) J &= 0: & \rightarrow \gamma Y(2S) = (4.6 \pm 2.1)\%, \quad p_{\gamma} = 207 \text{ MeV} \\ \chi_{b0}(10232) J &= 0: & \rightarrow \gamma Y(LS) = (0.9 \pm 0.6)\%, \quad p_{\gamma} = 743 \text{ MeV} \\ \chi_{b2}(10269) J &= 2: & \rightarrow \gamma Y(2S) = (16.2 \pm 2.4)\%, \quad p_{\gamma} = 242 \text{ MeV} \\ \chi_{b2}(10269) J &= 2: & \rightarrow \gamma Y(LS) = (7.1 \pm 1.0)\%, \quad p_{\gamma} = 777 \text{ MeV} \end{split}$$

→ Will not get good Y cross sections without knowing χ_b , and p-calibration is screwed up. "Soft" photons important. Use QED

Mike Albrow

Exclusive production in CDF: high mass

Exclusive production in CDF: high mass

<u>Summary</u>

Programme in CDF to measure central exclusive processes

- a) As interesting QCD physics in its own right but especially in a Tev-4-LHC spirit and to understand FP420/240 issues
- b) Measurements to demonstrate that p + H + p must happen (if H)
- c) Measurements to demonstrate that $\gamma\gamma \rightarrow ee$, $\mu\mu$ can be used in a hadron-hadron collider to calibrate forward spectrometers

I covered: $\begin{aligned}
\gamma\gamma \to e^+e^-, \mu^+\mu^- \\
\gamma + IP \to Y(1S), Y(2S), Y(3S), Z(?) \\
IP + IP \to \gamma\gamma
\end{aligned}$ More to come! Jim Pinfold will cover: $\begin{aligned}
\gamma\gamma \to \mu^+\mu^- \\
\gamma + IP \to J/\psi, \psi(2S) \\
IP + IP \to \chi_c
\end{aligned}$ our star reaction! 31

Mike Albrow

Exclusive production in CDF: high mass

Thank You

Mike Albrow

Exclusive production in CDF: high mass