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Introduction

• Spin correlations for the ΛΛ and        pairs generated 
in one act of collision of hadrons or nuclei and 
respective angular correlations at the joint registration 
of hadronic decays of two hyperons give the important 
information about the character of multiple processes.

• The advantage of ΛΛ and systems is due to the 
fact that the P-odd decays Λ → p + π- and                   
serve as effective analyzers of the spin states of Λ
and         particles. 
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1. General structure of the spin density matrix of 
the pairs of ΛΛ and  ΛΛ

• The spin density matrix of the  ΛΛ and           pairs, just as the 
spin density matrix of two   spin-½ particles in general, can be 
presented in the following form [1,2,3] :

in doing so,                          .  

Here      is the two-row unit matrix,                             is the vector 
Pauli operator ( x, y, z → 1, 2, 3 ),  
P1 and  P2 are the polarization vectors of the first and second 
particle  (                               ),                    are the 
correlation tensor components . In the general case             .  
The tensor with components                              describes the spin 
correlations of two particles .
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The respective one-particle density matrices are as follows:
,                   .

The trace of the correlation tensor is                      .      
The eigenvalues of the operator                       equal  λt = 1 for 
three triplet states ( total spin S = 1)  and  λs = –3 for the singlet 
state ( total spin S = 0 ) .

• Let us introduce the operators of projection onto the triplet states 
and onto the singlet state:

;          .

The following matrix equalities are satisfied:
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For all the purely triplet states the “trace” of the correlation tensor 
T = 1, whereas for the purely singlet state T = –3 .

The two-particle spin density matrix            may be decomposed 
into the triplet, singlet and the “mixed” singlet-triplet parts:

,    in doing so,

The relative fraction of the triplet states amounts to:

and the relative fraction of the singlet state amounts to:

in doing so,
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• Due to the orthogonality of the projection matrices      and   , the 
following relation holds:
.

• If the first particle and second particle have different relativistic 
momenta, the polarization vectors  P1 ,  P2 and the correlation tensor 
components with “left” and  “right” indices are specified, respectively, in 
the rest frames of the first and second particle -- in the unified 
coordinate axes of the c.m. frame of two particles .

• Let us remark that, although the spin state of a particle is specified in its 
rest frame, this state -- due to the kinematic effect of relativistic spin 
rotation – depends on the concrete frame, from which the transition to 
this rest frame is realized. For two particles with nonzero relative 
momentum, in the case when the laboratory momenta of the particles 
are not collinear, the angles of relativistic spin rotation at the 
transformation from the laboratory frame to the c.m. frame of the pair 
are different. Therefore, the values of polarization parameters 
(correlation tensor components ) in the laboratory frame are, in general, 
different from the respective values of polarization parameters in the 
c.m. frame of the pair [4]. It is natural to determine the correlation tensor 
components and the relative fractions of singlet state and triplet states 
namely in the c.m. frame of two particles, in which their total momentum 
equals zero, and, thus, to perform the transition to the rest frames of 
each of the particles through their c.m. frame.

tP̂ sP̂
0 ) ˆ ˆˆ ( ˆ  ˆ  )2,1( === tsstts PPtrtrtr ρρρ



2. Spin correlations and angular correlations at joint 
registration of decays of two Λ particles into the 

channel Λ → p + π-

• Any decay with the space parity nonconservation may  serve 
as an analyzer of spin state of the unstable  particle [3].

The normalized angular distribution at the decay  Λ → p + π–

takes the form:

Here  PΛ is the polarization vector of the  Λ particle,  n is the 
unit vector along the direction of proton momentum in the rest 
frame of the Λ particle,   αΛ is the coefficient of   P-odd 
angular asymmetry  ( αΛ = 0.642 ). 

The decay  Λ → p + π– selects the projections of spin of the  
Λ particle onto the direction of proton momentum; the 
analyzing power equals ξ = αΛ n  .
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• Now let us consider the double angular distribution of flight 
directions for protons formed in the decays of two  Λ particles 
into the channel   Λ → p + π– , normalized by unity ( the 
analyzing powers are ξ1 = αΛ n1 ,  ξ2 = αΛ n2 )  . It is described 
by the following formula [2,3]:

where  P1 and  P2 are polarization vectors of the first and 
second  Λ particle, Tik are the correlation tensor components,  
n1 and  n2 are unit vectors in the respective rest frames of 
the first and second  Λ particle, defined in the common     
(unified)  coordinate axes of the c.m. frame of the pair 
(i, k = {1, 2, 3} = { x, y, z } ) .

• Using the method of moments, the components of polarization 
vectors and correlation tensor may be determined as a result of 
averaging combinations of trigonometric functions of angles of 
proton flight over the double angular distribution [2,3]:
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Here
;

n1x = sin θ1 cos ϕ1 ;  n1y = sin θ1 sin ϕ1 ;   n1z = cos θ1 ;
n2x = sin θ2 cos ϕ2 ;  n2y = sin θ2 cos ϕ2 ;   n2z = cos θ2 ,

where  θ1 and  ϕ1 ,  θ2 and  ϕ2 are the polar and azimuthal angles of 
emission of protons in the rest frames of the first and second Λ
particle, respectively – with respect to the unified system of coordinate 
axes of c.m. frame of pair;                                 and            
are the elements of solid angles of proton emission .

• The double angular distribution may be integrated over all angles 
except the angle  θ  between the vectors  n1 and  n2 : 
cos θ = n1 n2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos (ϕ1 – ϕ2)      .
At this integration, the solid angle element         can be defined, without 
losing generality, in the coordinate frame with the axis z  being parallel 
to the vector n1 , and the solid angle element            is defined in the 
coordinate frame where the polarization parameters are specified:                 

here  ϕ is the azimuthal angle of rotation of the vector  n2 around the 
vector  n1 .

21

21

  ),(    ) .... (      .... 21
2

nn
nn

nn
ΩΩ

ΩΩ
dd

dd
wd∫ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡〉〈

    sin 1111
ϕθθΩ ddd =n     sin 2222

ϕθθΩ ddd =n

2nΩd

1nΩd

    sin
2

ϕθθΩ ddd =n     sin 1111
ϕθθΩ ddd =n



• So, the angular correlation between the proton momenta at 
the decays of two  Λ particles is expressed as follows:

In doing so,  

The angular correlation, being described by the formula 
[2,3,5,6]

is determined only by the ``trace" of the correlation tensor
T = Wt – 3Ws , and it does not depend on the polarization 
vectors ( single-particle states may be unpolarized ).
So, finally we have:

Ws and Wt are relative fractions of the singlet state and 
triplet states, respectively .
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3. Correlations at the joint registration of the decays 
Λ → p + π- and                                  +π+→Λ p

• Due to CP  invariance, the coefficients of P-odd angular 
asymmetry for the decays   Λ → p + π- and                   
have equal absolute values and opposite signs:              .  
The double angular distribution for this case is as follows [2,3]:

( here                             and                      )  .
• Thus, the angular correlation between the proton and 

antiproton momenta in the rest frames of the Λ and     particles 
is described by the expression :

• where θ  is the angle between the proton and antiproton 
momenta .

+π+→Λ p
642.0−=−= ΛΛ αα
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4. Model of one-particle sources

• For describing the momentum-energy correlations and related spin 
correlations of identical particles, generated in processes with high 
multiplicity, the model of one-particle sources ( “constituents” ) is 
widely applied [7].

• In the framework of this model, the sources emitting particles do not 
overlap in space and time, -- it is supposed that the sizes of the 
sources themselves are small as compared with the distances 
between them. In accordance with this, each source is characterized 
by the 4-coordinate  xi = { ri , ti } . In doing so, the spatial region 
occupied by all the sources is very small as compared with the sizes of 
detectors measuring the particle momenta p1 and p2 , and the 
duration of the generation process is very small as compared with the 
time parameters of detectors.

• According to the model of one-particle sources (Kopylov, Podgoretsky) 
[7], particles are emitted by the sources independently and 
incoherently. Thus, at the early stage of particle formation (at the stage 
of hadronization of quarks and gluons) the momentum-energy and 
spin correlations are absent .



Correlations for identical particles, produced in the same event of 
collision, arise on account of the effects of quantum statistics ( Bose 
statistics for particles with integer spin and Fermi statistics for 
particles with half-integer spin ) and  final-state interaction [8]. At 
present the model of sources is successfully used as well for the  
description of pair momentum-energy correlations of non-identical 
particles, conditioned exclusively by the final-state interaction .

• It is essential that the pair momentum-energy correlations depend 
upon the momentum difference in the c.m. frame of the pair and,-- as 
upon the parameters of the process,-- upon the space--time 
characteristics of the region of multiple generation of particles, 
corresponding to the so-called  “freeze-out” . In accordance with the 
model of sources, the correlations reach the maximum at relative 
momenta being small as compared with the inverse space--time 
dimensions of the generation region, whereas in the limit of large 
relative momenta they disappear . This fact has served as a basis for 
elaboration of the correlation method ( the so-called correlation 
femtoscopy ), allowing one to investigate experimentally the space--
time development of the processes of multiple generation of leptons, 
photons and hadrons .



• Since the momentum-energy correlations  are substantial only in a 
sufficiently narrow range of small relative momenta, in most of real 
events the particle density in phase space is enough small, so that it 
would be possible to consider the pair correlations only, disregarding 
the triple correlations (moreover, the correlations of higher orders ) as 
well as neglecting their influence upon the pair correlations .

• In the model under consideration, the sources have a very broad 
momentum spectrum as compared with the relative momenta being 
characteristic for pair correlations; thus, the emission probabilities for 
each of the one-particle sources change insignificantly under the 
variation of 4-momenta  p1 and  p2 within the correlation effect  ( that is 
the so-called  “smoothness condition” ).

• The method of correlation femtoscopy, based on the source model, 
have been used enough successfully for studying the correlations in 
processes of collision of elementary particles . But, by its essence, this 
approach is the most adequate one for processes of multiple generation 
of particles in collisions of heavy nuclei .



5. Spin correlations at the generation of ΛΛ pairs in 
multiple processes

a) The Fermi-statistics effect leads not only to the momentum-
energy  ΛΛ correlations at small relative momenta ( correlation 
femtoscopy ), but to the spin correlations as well .
The following relation holds, in consequence of the 
symmetrization or antisymmetrization of the total wave function 
of any identical particles with  nonzero spin ( bosons as well as 
fermions ) [9] :

.
Here S is the total spin and L is the orbital momentum in the 
c.m. frame . At the momentum difference q  =  p1 -– p2 → 0  the 
states with nonzero orbital momenta “die out” , and only states 
with L = 0  and even total spin S  survive .
Since the Λ-particle spin is equal to ½ ,  at q → 0  the  ΛΛ pair is 
generated only in the singlet state with S = 0 .
Meantime, at the 4-momentum difference q  ≠ 0  there are also 
triplet states generated together with the singlet state .

  1)1( =− +LS



• Within the accepted model of one-particle sources emitting 
unpolarized particles, the triplet states with spin projections  +1,  
0 and  –1 are produced with equal probabilities. If correlations 
are neglected, the singlet state is generated with the same 
probability, -- the relative “weights” are                                   .
Taking into account the Fermi statistics and s -wave final-state 

interaction, which is essential at close momenta (at orbital 
momenta L ≠ 0  the contribution of final-state interaction is 
suppressed), the fractions of triplet states and the singlet state    
become proportional to the quantities [8,10]:

here q  = p1 – p2 is the difference of 4-momenta,  x = x1 – x2 is 
the difference of 4-coordinates of two sources .
In the above formula                                      is the Fermi-

statistics contribution; here W( x)  is the distribution of difference 
of 4-coordinates of two sources;  Bint (q)  is the contribution of s -
wave final-state interaction of two Λ particles. 
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In doing so,

is the correlation function describing the momentum-energy 
correlations of two  Λ particles with close momenta .

• The correlation function  R(q) represents the ratio of the two-
particle spectrum to the non-correlated background, which is 
constructed usually as a product of one-particle spectra from 
different events at the same values of momenta. In terms of 
inclusive cross sections we have [10]:

,

where n is the multiplicity and  σtot is the total interaction 
cross-section

(for Poisson distribution of multiplicity we have            ). 
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• b) The spin density matrix of two  Λ particles with close 
momenta at the emission of unpolarized Λ particles has the 
following structure: 

Here                

is the density matrix of the singlet state, and

is the density matrix of the unpolarized triplet state, averaged 
over the spin projections   λ = +1, 0, –1 :

• It is easy to see that the above formula for         can be 
rewritten in the form:

.
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• The correlation tensor components [2]  

depend upon the momentum difference as well as upon the 
space-time parameters of the generation region;
the trace of the correlation tensor amounts to

.

Thus, on account of the effects of quantum statistics and final-
state interaction, at small relative momenta two identical 
particles, initially unpolarized ( P1 = P2 = 0 )  and non-
correlated by spins, remain unpolarized as well but their spins 
become correlated .
At q → 0  we obtain:                                          ( singlet state ).
On the other hand, in the limit of large q  :

i.e. both the momentum-energy and spin correlations vanish .
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c)  Let two one-particle sources emit  Λ particles with equal 
polarization vectors                     .
Then, at the stage of emission by sources, correlations are
absent . Due to the effects of Fermi statistics and s –wave 
final-state interaction, the polarization parameters are 
renormalized :

;

, 
where 

is the function describing the momentum-energy correlations .
Irrespective of the primary polarization      , at the momentum 
difference q → 0  only the singlet state of the ΛΛ pair is 
realized and the renormalized polarization vectors  P1 = P2
tend to zero . The s- wave final-state interaction amplifies the 
predominant role of the singlet state. If           , then in the limit
q → 0  the generation of  ΛΛ pairs is forbidden – in full 
accordance with the Pauli principle .

PPP ~~~
21 ==

PPP ~  )   cos 1 ( 
)(

1
21 〉〈−== qx

qR

⎥
⎦

⎤
⎢
⎣

⎡
+〉〈

−
−〉〈−=   ) )(  cos  ( 

2

~1 ~ ~ )   cos 1 (  
)(

1
int

2

ikkiik qBqxPPPqx
qR

T δ

)( 
2

~1  cos  
2

~11)( int

22

qBPqxPqR −
+〉〈

+
−=

P~

1~ =P



d)  Lorentz-transformation of 4-momenta and 4-coordinates of 
sources to the c.m. frame of the ΛΛ pair.
In the c.m. frame we have: q = {0, 2k }, where k is the 
momentum of   one of the particles. In doing so, the momentum 
k is connected with the relative momentum  q in the laboratory 
frame by the Lorentz transformation [10]:

here   v = ( p1 + p2 ) / ( ε1 +ε2 )  is the velocity of the  ΛΛ pair in 
the laboratory frame,                 is the Lorentz factor,     
q = p1 – p2     and   q0 = ε1 – ε2 .
The Lorentz transformations of 4-coordinates are given by the 
expressions :

where   r = x1 – x2 and  t = t1 – t2 .
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• The interference term connected with identity (quantum 
statistics), is determined by the expression:

,

where

is the distribution of coordinate difference between two sources in 
the c.m. frame of the ΛΛ pair .

• Meantime, the contribution of s-wave final-state interaction is 
expressed as follows  ( at the sizes of the generation region in the 
c.m. frame, exceeding the effective radius of interaction of two Λ
particles ):

,

where the function              has the structure [2,8,10]:
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Here  k = | k | ,               ,                is the amplitude of low-energy  
ΛΛ scattering. In the framework of the effective radius theory  
[9,11]

,
where (            )  is the scattering length and          is the effective 
radius:

.
The integral for             , with the above expression for           
inside, approximately takes into account the difference of the true 
wave function of two interacting Λ particles with momenta k and  
–k at small distances from the asymptotic wave function of 
continuous spectrum [8,12].
Information about the parameters of ΛΛ scattering is contained 

in the works studying double hypernuclei and pair correlations in 
the reactions with formation of two Λ particles. Analysis of 
experimental data leads to the conclusion that the length of ΛΛ
scattering is comparable by magnitude (∼ (–20) fm ) with the 
length of neutron-neutron scattering [13].
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6. Spin correlations at the generation of
pairs in multiple processesΛΛ

• In the framework of the model of independent one-particle 
sources, spin correlations in the         system arise only on 
account of the difference between the interaction in the final triplet 
state ( S = 1 ) and the interaction in the final singlet state. At small 
relative momenta, the s -wave interaction plays the dominant role 
as before, but, contrary to the case of identical particles ( ΛΛ ) ,  
in the case of non-identical particles (       )  the total spin may 
take both the values S = 1 and S = 0 at the orbital momentum
L = 0 .  In doing so, the interference effect, connected with 
quantum statistics, is absent .
If the sources emit unpolarized particles, then, in the case under 
consideration, the correlation function describing momentum-
energy correlations has the following structure ( in the c.m. frame 
of the            pair ) :
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• The spin density matrix of the             pair is given by the formula :

and the components of the correlation tensor are as follows:

here the contributions of final-state triplet and singlet
interaction are determined by the expression (analogously to the 
case of  ΛΛ interaction [2,8] with the replacement
[10]):
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where                is the amplitude of low-energy singlet 
(triplet)              scattering,                              ;

the averaging is performed over the distribution of distance 
between the sources of Λ and         particles.

• At sufficiently large values of  k , one should expect that [8]:
.

In this case the angular correlations in the decays 
Λ → p + π – and                        ,   connected with the final-
state interaction, are absent :

Tik = 0,        T = 0 .
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7. Angular correlations in the decays Λ → p + π-

and              and the “mixed phase”+π+→Λ p

• Thus, at sufficiently large relative momenta (for example,  k  ≥ mπ)
one should expect that the angular correlations in the decays 
Λ → p + π– and                   , in the framework of the model of 
one-particle sources are absent. In this case two-particle (and 
multiparticle) sources may be, in principle, the cause of the spin 
correlations. Such a situation may arise, if at the considered 
energy the dynamical trajectory of the system passes through the
so-called “mixed phase”; then the two-particle sources, consisting 
of the free quark and antiquark , start playing a noticeable role . 
For example, the process                    may be discussed .
The CP parity of the fermion-antifermion pair is                       .

• In the case of one-gluon exchange, CP = 1, and then  S = 1, i.e. 
the        pair is generated in the triplet state; in doing so, the 
“trace” of the correlation tensor T = 1 .

+π+→Λ p

ΛΛ→ss
1) 1( +−= SCP

ΛΛ



• Even if the frames of one-gluon exchange are overstepped, 
the quarks s and    , being ultrarelativistic, interact in the 
triplet state (S = 1) . In so doing, the primary CP parity CP = 
1, and, due to the CP parity conservation, the        pair is 
also produced in the triplet state. Let us denote the 
contribution of two-quark sources by x . Then at large relative 
momenta T = x > 0   .

• Apart from the two-quark sources, there are also two-gluon 
sources being able to play a comparable role. Analogously 
with the annihilation process                    , in this case the 
trace of the correlation tensor is described by the formula     
( the process                        is  implied ) :
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where β is the velocity of  Λ ( and       )  in the c.m. frame of 
the        pair, θ is the angle between the momenta of one of 
the gluons and  Λ in the c.m. frame ( see [14] ) .  At small β
( β << 1 )  the        pair is produced in the singlet state ( total 
spin  S = 0, T = –3 ) , whereas at   β ≈ 1 – in the triplet state        
( S = 1, T = 1) . Let us remark that at ultrarelativistic velocities  
β ( i.e. at extremely large relative momenta of  Λ and      )  
both the two-quark and two-gluon mechanisms lead to the 
triplet state of the         pair ( T = 1 ) .

• In the general case, the appearance of angular correlations 
in the decays Λ → p + π– and                      with the  
nonzero values of the “trace” of the correlation tensor T at 
large relative momenta of the Λ and        particles may testify 
to the passage of the system through the  “mixed phase” .
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8. Summary

• It is advisable to investigate the spin correlations of   ΛΛ
and              pairs produced in relativistic heavy ion collisions.

• The spin correlations are studied by the method of angular 
correlations – method of moments.

• The spin correlations, as well as the momentum-energy ones, 
make it possible to determine the space-time characteristics 
of the generation region and, besides, the parameters of low-
energy scattering of   Λ on   Λ and   Λ on        .  They 
should be investigated jointly with the momentum-energy 
correlations.

ΛΛ

Λ
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