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Jets in heavy ion collisions

Jets will be of paramount importance to fully exploit the potential of the HIC
program at the LHC

I Jets will be most abundant hard probes in HIC at the LHC
From CMS HIC TDR (J. Phys. G: Nucl. Part. Phys. 34 2307)
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Jets in heavy ion collisions

Jets will be of paramount importance to fully exploit the potential of the HIC
program at the LHC

I Jets will be most abundant hard probes in HIC at the LHC

I Jets free of inclusive particle measurements biases

I Subleading jet fragments sensitive medium modeling details

I A solid pQCD baseline is required to detect and quantify medium effects

Open questions:

I To which extend can reconstructed QCD jets be disentangled from
background?

I Which is the minimum size of medium effects which could then be
disentangled?

I Can all the successful jet technology from pp be transferred to a HIC
environment?
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JET CLUSTERING TECHNOLOGY
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Jets
Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions. Electrons and muons are fundamental, weakly coupled particles — it
makes sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

I Partons split into further partons

I Jets are a a way of thinking of the ‘original parton’

I A ‘jet’ is a fundamentally ambiguous concept (e.g. requires a
resolution)

Jets (and partons!) are only meaningful once you’ve defined a jet algorithm.
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Jet algorithm requirements

What is needed of a jet algorithm

I Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets
collinear splitting shouldn’t change jets

I Must be identical procedure at parton level, hadron-level and
experimental level
So that theory calculations can be compared to measurements

What is nice for a jet algorithm

I Shouldn’t be too sensitive to hadronization, underlying event and pileup,
while being sensitive to perturbative radiation.

I Should be realistically applicable at detector level.

I Should allow fast implementations, to cope with the large particle
multiplicities at hadronic colliders and in Heavy Ion Collisions.
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kt algorithm in action (R = 1)
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Recent developments

Sizable progress in jet algorithms in recent years (References: G. Salam, arXiv:0906.1833)

I Fast implementation of sequential recombination clustering algorithms
(kT , Cam/Aa)

I Jet areas (Ajet 6= πR2 in general)
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Recent developments

Sizable progress in jet algorithms in recent years (References: G. Salam, arXiv:0906.1833)

I Fast implementation of sequential recombination clustering algorithms
(kT , Cam/Aa)

I Jet areas (Ajet 6= πR2 in general)

I New IRC safe jet algorithms (SISCone, anti-kT ) → Replacement for IRC
unsafe cone algorithms (IR-SM like MidPoint and IC-PR like ATLAS
cone)

All these tools available from the FastJet package:

http://www.lpthe.jussieu.fr/salam/fastjet/

together with background subtraction methods
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Jets in HIC → A messy environment!

pp → gg events with pjet
T ∼ 100 GeV and R = 0.4 - No PbPb
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Jets in HIC → A messy environment!

pp → gg events with pjet
T ∼ 100 GeV and R = 0.4 - PbPb model NSH

y
-4 -3 -2 -1 0 1 2 3 4

φ

0
1

2
3

4
5

6

 [
G

eV
]

T
p

20

40

60

80

100

120

Juan Rojo INFN Milano

Medium tomography with jet clustering algorithms



Jets in heavy ion collisions Jet clustering technology Modeling medium effects Jets in medium

Jets in HIC → A messy environment!

pp → gg events with pjet
T ∼ 100 GeV and R = 0.4 - PbPb model SH
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Jets @ RHIC
4 S. Salur

Fig. 1. 21 GeV di-jet reconstructed from a central Au+Au event at
√

sNN = 200
GeV in the STAR detector [ 4, 5].

Fig. 2. Jet yield per event vs transverse jet energy (ET ) for the central Au+Au
collisions obtained by the sequential recombination (kT, CAMB) algorithms [ 2, 4].
Triangle symbols are from MB-Trig and corrected for efficiency, acceptance and
energy resolution. Only statistical error bars are shown for the Au+Au data. Solid
black squares are the distribution from p + p collisions, scaled by NBinary. The
systematic uncertainty of the p + p jet spectra normalization is ∼ 50%.

fragmentation due to jet quenching.

Jets already measured at
STAR @ RHIC

1. Important
information of
medium effects

2. No suppression
observed in the
inclusive jet
distribution (unlike
in hadron
production spectra)
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Jet areas for Background subtraction
Data-driven method to estimate the background density per unit area ρ (from
the Underlying Event) on an event-by-event basis

Jets, G. Salam (p. 20)

Jets in HIC Elements in jet extraction [1]

1. Estimate the transverse momentum density from the collective flow
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Example Cacciari & GPS ’07

Cacciari, GPS & Soyez’08

+ talk by J. Rojo tomorrow

! For each jet look at pt/A

! Extract resulting ρ(y) (or ρ(y , φ))
locally, globally

removing “hard” jets

! pt → pt − ρA
-ve pt jets ↔ resolution

hard jets “stick out” clearly

1.- Measure the pT of all jets in event

Conceptuallly simple but powerful technique
Juan Rojo INFN Milano
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Jet areas for Background subtraction
Data-driven method to estimate the background density per unit area ρ (from
the Underlying Event) on an event-by-event basis

Jets, G. Salam (p. 20)

Jets in HIC Elements in jet extraction [1]

1. Estimate the transverse momentum density from the collective flow
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Example Cacciari & GPS ’07

Cacciari, GPS & Soyez’08

+ talk by J. Rojo tomorrow

! For each jet look at pt/A

! Extract resulting ρ(y) (or ρ(y , φ))
locally, globally

removing “hard” jets

! pt → pt − ρA
-ve pt jets ↔ resolution

hard jets “stick out” clearly

1.- Measure the pT of all jets in event
2.- Normalize by the jet area Aj

Key observation → For UE jets,
pjet

T ∼ ρ(y , φ)Ajet

Conceptuallly simple but powerful technique
Juan Rojo INFN Milano
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Jet areas for Background subtraction
Data-driven method to estimate the background density per unit area ρ (from
the Underlying Event) on an event-by-event basis

Jets, G. Salam (p. 20)

Jets in HIC Elements in jet extraction [1]

1. Estimate the transverse momentum density from the collective flow
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Example Cacciari & GPS ’07

Cacciari, GPS & Soyez’08

+ talk by J. Rojo tomorrow

! For each jet look at pt/A

! Extract resulting ρ(y) (or ρ(y , φ))
locally, globally

removing “hard” jets

! pt → pt − ρA
-ve pt jets ↔ resolution

hard jets “stick out” clearly

1.- Measure the pT of all jets in event
2.- Normalize by the jet area Aj

Key observation → For UE jets, pjet
T ∼

ρ(y , φ)Ajet

3.- Determine ρ(y , φ)
(No unique strategy, HIC background
very complex structure)

Conceptuallly simple but powerful technique
Juan Rojo INFN Milano
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Jet areas for Background subtraction
Data-driven method to estimate the background density per unit area ρ (from
the Underlying Event) on an event-by-event basis

Jets, G. Salam (p. 20)

Jets in HIC Elements in jet extraction [2]

2. Subtract the collective flow from jets (either before or after clustering)
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Example Cacciari & GPS ’07

Cacciari, GPS & Soyez’08

+ talk by J. Rojo tomorrow

! For each jet look at pt/A

! Extract resulting ρ(y) (or ρ(y , φ))
locally, globally

removing “hard” jets

! pt → pt − ρA
-ve pt jets ↔ resolution

hard jets “stick out” clearly

1.- Measure the pT of all jets in event
2.- Normalize by the jet area Aj

Key observation → For UE jets, pjet
T ∼

ρ(y , φ)Ajet

3.- Determine ρ(y , φ)
(Various strategy, HIC background very
complex structure)
4.- Subtract ρ(y , φ) from the all jets us-
ing its area Aj

p
(sub)
µj = pµj − Aµj ρ(y , φ) (1)

Conceptuallly simple but powerful technique
Juan Rojo INFN Milano
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Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT algorithm with R = 0.4
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Jet algorithms performance in pp at LHC
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Not all jet definitions
equally good:

1. Too small-R →
Hadronization
effects

2. Too large-R →
Underlying Event
and Pile-Up
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Jet algorithms performance in pp at LHC

Not all jet definitions
equally good:

1. Too small-R →
Hadronization
effects

2. Too large-R →
Underlying Event
and Pile-Up
Same for High
Luminosity LHC
Pile-Up

JetQuality: Interactive tool compare jet definitions (JHEP 0812:032,2008)

http://www.lpthe.jussieu.fr/ salam/jet-quality/
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MODELING MEDIUM EFFECTS
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Medium effects

Implementation of different medium models in practical MC tools → Basic tool
for both theorists and experimentalists!

Assess potential of different jet finding strategies in realistic environment → In

HIC, understanding and subtracting the UE is also a theorist’s task!!
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Medium effects

Implementation of different medium models in practical MC tools → Basic tool
for both theorists and experimentalists!

Assess potential of different jet finding strategies in realistic environment → In

HIC, understanding and subtracting the UE is also a theorist’s task!!

Medium effects from ACSW (Armesto et al, JHEP 0802:048,2008): radiative
energy loss through modification of vacuum splitting functions.

Ptot(z) = Pvac(z) + ∆P(z , t) , ∆P(z , t) ' 2πt

αs

dImed

dzdt

Implemented in modified Pythia 6.4 to Q-PYTHIA: A fully exclusive MC for
jet quenching in HIC

Juan Rojo INFN Milano
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JETS IN MEDIUM
(Preliminary results)
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Medium tomography

Quantifying medium effects → Example: inclusive jet distribution

I Theoretical prediction

Rtheo
AA (pT ) ≡ dσpp+med/dpT

dσpp/dpT

I Experimental measurement (no subtraction)

Rexp−1
AA (pT ) ≡ dσpp+med+PbPb/dpT

dσpp/dpT

I Experimental measurement (subtraction)

Rexp−2
AA (pT ) ≡ dσpp+med+PbPb+sub/dpT

dσpp/dpT

In real experimental measurements → Normalize to the average number of

binary collisions

Juan Rojo INFN Milano
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Inclusive jet distribution
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Inclusive jet distribution
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Dijet azimuthal correlations
Medium effects soften away-side correlations
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Jet shape
Jet substructure φ(r) useful discriminator of medium effects

Cluster jet constituents with Rsj (r ≡ Rsj/Rjet < 1) and keep hardest subjet

with psj
T (≤ pjet

T ). Rjet = 0.5, 0.15 ≤ Rsj ≤ 0.5

With the anti-kT algorithm (reduced backreaction)
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Jet shape - LL pQCD
If medium effects parametrized by (1 + fmed) in the singular part of the
splitting functions (Borghini et al. 05) then
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Summary

I Modern jet clustering algorithms and background subtraction related
techniques are very promising tools to probe the new state of matter
created in Heavy Ion collisions

I Full QCD jets can be disentangled from background (at least) down to 50
GeV, and medium effects in the ACSW model down to conservative
estimations for medium parameters at the LHC

I The flexibility in jet algorithms allows the estimation of systematic
uncertainties associated to background subtraction

I The approach presented in this talk on jet finding technology can be
applied to study the effects of any model of medium effects and jet
quenching: various models implemented in MC codes:
Q-PYTHIA (Armesto et al., JEWEL (K. Zapp et al, arXiv:0804.3568, T.
Renk, arXiv:0806.0305, HYDJET, PYQUENCH , ...

I Our goal: determine which observables are most sensitive to discriminate
between the various models of medium effects in realistic conditions
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EXTRA MATERIAL
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Sequential recombination algorithms

Example: the kt algorithm:

1. Calculate (or update) distances between all particles i and j , and between
i and beam:

dij = min(k2
ti , k

2
tj)

∆R2
ij

R2
, diB = k2

ti , ∆R2
ij = ∆y 2

ij + ∆φ2
ij

2. Find smallest of dij and diB

I If dij is smallest, recombine i and j (add result to particle list,
remove i , j)

I if diB is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.

Single parameter: R (like cone radius), whose natural value is O (1)
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Jet shape
Jet substructure φ(r) useful discriminator of medium effects

Cluster jet constituents with Rsj (r ≡ Rsj/Rjet < 1) and keep hardest subjet

with psj
T (≤ pjet

T ). Rjet = 0.5, 0.15 ≤ Rsj ≤ 0.5

With the anti-kT algorithm (reduced backreaction)

j/Rsjr = R
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>
j T
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p
sj T
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pp -> gg
=100 GeV

T,jet
p

PbPb @ 5.5 TeV (NSH)
 alg, R=0.5TAnti-K

qhL = 0, no PbPb
qhL = 0, w PbPb, sub
qhL = 20 GeV, no PbPb
qhL = 20 GeV, w PbPb, sub

Jet shape

Backreaction effects partially cancel in ratiosJuan Rojo INFN Milano
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Cluster jet constituents with Rsj (r ≡ Rsj/Rjet < 1) and keep hardest subjet

with psj
T (≤ pjet
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT algorithm with R = 0.4
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT algorithm with R = 0.4
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
Cam/Aa(filt) algorithm with R = 0.4
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
Cam/Aa(filt) algorithm with R = 0.4
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
Cam/Aa(filt) algorithm with R = 0.4
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT and Cam/Aa(filt) algorithms with R = 0.4
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I Filtering decreases sizably the shift in pj
T due to UE due a reduction in

the jet area (from δpUE
T ∼ 70 with kT to δpUE

T ∼ 30 with Cam/Aa(filt) )

I Filtering reduces the UE contamination, similarly imposing a cut in pT

but with a IRC safe and unbiased method
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Jet reconstruction

Compare reconstruction efficiency for pp jets (pjet
T = 100 GeV) and PbPb jets

with UE(NSH) subtracted (Nmis id ≤ 3%), kt alg, R=0.4
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=0.08σgaussian fit:  
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Rapidity reconstruction
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Rapidity reconstruction

Note effects of Back-reaction (∼ 3% correction)

Extract σreco
pT

: figure of merit of jet reconstruction
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Jet areas for Background subtraction

I Subtraction brings p
(sub)
µj much closer to the original pµj value

I Subtraction improves sizably the jet resolution (event-by-event correction)

I No cut in the pT of particles required (reduce potential biases)

I Subtraction is not meant to be perfect: various (in general small,
computable) effects complicate picture: fluctuations of the background
σρ (observable)

2 The method

We propose an event-by-event, and jet-by-jet, pileup subtraction approach that is suitable for
any infrared safe jet algorithm, and which performs the corrections after the jet finding has been
carried out, so as to ensure independence on the specific detector setup. It is based on two novel
ingredients: i) the measurement of each jet’s susceptibility to contamination from diffuse noise and
ii) an essentially parameter-free technique to measure the level, ρ, of this diffuse noise in any given
event, where by noise (or also ‘background’), we refer to any form of diffuse contamination in the
event, usually due to minimum-bias pileup and to some extent the underlying event.1

i) The jet’s susceptibility to contamination is embodied in the jet area, A, measured on the
rapidity (y), azimuth (φ) cylinder. The jet area is a non-trivial (and novel) concept insofar as a
jet consists of pointlike particles, which themselves have no intrinsic area. To define a sensible
area one therefore adds additional, infinitely soft particles (ghosts) and identifies the region in y, φ
where those ghosts are clustered with a given jet. The extent of this region gives a measure of the
(dimensionless) jet area.

The jet area is different for each jet and depends on the details of its substructure, and to some
extent on the event as a whole. Contrary to common wisdom, jet areas can differ significantly
from πR2 even for more geometrical jet definitions, such as cone algorithms (R here is the radius
parameter in the jet definition). Consequently only the measured area for each jet provides reliable
information about its level of potential contamination.

The exact details of the determination of the jet areas (for example the choice of distribution of
infinitely soft particles) are largely irrelevant here, and are instead to be found discussed at length
in [5], which also presents studies of the properties of jet areas for a range of jet algorithms. The
practical measurement of the jet areas is carried out using the FastJet package [6] and relies on
the fast computational strategies for jet clustering described in [7, 8].

Given a suitable definition of jet area, the modification of a jet’s transverse momentum (pt) by
diffuse noise can be shown to be [5]

∆pt = Aρ ± σ
√

A − L , 〈L〉 = O
(

αs · Aρ ln
pt

Aρ

)

, (1)

where ρ, the level of diffuse noise, corresponds to the amount of transverse momentum added to the
event per unit area, for example by minimum bias particles. These particles are taken to be dense
on the scale R of the jet algorithm, as is bound to be the case with many minimum bias events, and
σ is the standard deviation of the resulting noise when measured across many regions of unit area.
At high-luminosity at LHC ρ is expected [9] to be ∼ 10 − 20GeV per unit area. The first term in
eq. (1) is therefore the geometrical contamination of the jet and is associated with an uncertainty
(second term) because of fluctuations in the noise from point to point in the event. The third term,
L, accounts for the occasional loss (or the even more occasional gain) of part of the jet’s contents,
due to the fact that jets can be modified when clustered in the presence of diffuse noise, as some
of the particles originally clustered into one jet can instead end up in a different one. One should
be aware that this contribution has a very non-Gaussian distribution — usually it is small, but a
fraction αs of the time it can become comparable to Aρ.2

1The terms noise and background are specifically not intended to refer to experimental (e.g. electronics) noise,
though it is not inconceivable that such experimental noise could be treated on a similar footing.

2As discussed in [5], the average value of L is dominated by situations in which an emission p2 is near the edge
of the jet with Aρ ! p2t ! pt and is lost from the jet. This is a very rare occurrence, ∼ αsdp2t/p2t · (Aρ/p2t), with
the second (suppression) factor embodying the fact that as the emission p2 is made harder it is progressively more
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Figure 12: Numerical results for the diffuse effective back-reaction ‘area’, B(L,G)
JA,R (pt2/ρ), for the kt

and Cambridge/Aachen algorithms, with the point-like results b(L,G)
JA,1 (pt2/ptm) shown for comparison

also. Results obtained for R = 1 and verified also for R = 0.7.

form is rather similar though the normalisations are somewhat smaller (by a factor of 2 for loss, a
factor ∼ 10 for gain). The asymptotic large-pt2 behaviours are observed to be

B(L)
kt,R

(pt2/ρ) " B(L)
Cam,R(pt2/ρ) " 0.11πR2 ρ

pt2
(72a)

B(G)
kt,R

(pt2/ρ) " B(G)
Cam,R(pt2/ρ) " 0.013πR2 ρ

pt2
(72b)

As in the point-like case we can calculate the mean change in jet transverse momentum due to back
reaction and we obtain

〈∆p(G−L)
t,JA,R〉 "

∫ pt1

ptm

dpt2pt2





dP (G)
JA,R

dpt2
−

dP (L)
JA,R

dpt2



 = BJA,R ρ · C1

πb0
ln

αs(ρR3)

αs(pt1R)
, (73)

with
BJA,R = lim

pt2→∞

pt2

ρ

(

B(G)
JA,R(pt2/ρ) − B(L)

JA,R(pt2/ρ)
)

. (74)

Even though b(L,G)
JA,R had pt2/ptm as its argument and B(L,G)

JA,R has pt2/ρ, the final expressions for
the average back-reaction in the point-like and diffuse cases, eqs. (65), (73), have almost identical
forms — in particular the overall scale appearing in each is ρ and the only difference appears in the
denominator for the argument of the logarithm. The coefficients are slightly smaller,

Bkt,R = BCam,R " −0.10πR2 , (75a)

BSISCone,R = 0 , (75b)

and will again translate to modest effects compared to the overall minimum-bias contamination in

the jets. Note also however that in general the scaling with R of b(L/G)
kt,R

(pt2/ptm) and B(L/G)
kt,R

(pt2/ρ) is

subtly different. The former truly behaves like an area, in that b(L/G)
kt,R

(pt2/ptm)/R2 is R-independent;

the latter instead has the property that it is B(L/G)
kt,R

(R2pt2/ρ) that is R-independent.
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(sub)
µj much closer to the original pµj value

I Subtraction improves sizably the jet resolution (event-by-event correction)

I No cut in the pT of particles required (reduce potential biases)

I Subtraction is not meant to be perfect: various (in general small,
computable) effects complicate picture: fluctuations of the background
σρ (observable)

2 The method

We propose an event-by-event, and jet-by-jet, pileup subtraction approach that is suitable for
any infrared safe jet algorithm, and which performs the corrections after the jet finding has been
carried out, so as to ensure independence on the specific detector setup. It is based on two novel
ingredients: i) the measurement of each jet’s susceptibility to contamination from diffuse noise and
ii) an essentially parameter-free technique to measure the level, ρ, of this diffuse noise in any given
event, where by noise (or also ‘background’), we refer to any form of diffuse contamination in the
event, usually due to minimum-bias pileup and to some extent the underlying event.1

i) The jet’s susceptibility to contamination is embodied in the jet area, A, measured on the
rapidity (y), azimuth (φ) cylinder. The jet area is a non-trivial (and novel) concept insofar as a
jet consists of pointlike particles, which themselves have no intrinsic area. To define a sensible
area one therefore adds additional, infinitely soft particles (ghosts) and identifies the region in y, φ
where those ghosts are clustered with a given jet. The extent of this region gives a measure of the
(dimensionless) jet area.

The jet area is different for each jet and depends on the details of its substructure, and to some
extent on the event as a whole. Contrary to common wisdom, jet areas can differ significantly
from πR2 even for more geometrical jet definitions, such as cone algorithms (R here is the radius
parameter in the jet definition). Consequently only the measured area for each jet provides reliable
information about its level of potential contamination.

The exact details of the determination of the jet areas (for example the choice of distribution of
infinitely soft particles) are largely irrelevant here, and are instead to be found discussed at length
in [5], which also presents studies of the properties of jet areas for a range of jet algorithms. The
practical measurement of the jet areas is carried out using the FastJet package [6] and relies on
the fast computational strategies for jet clustering described in [7, 8].

Given a suitable definition of jet area, the modification of a jet’s transverse momentum (pt) by
diffuse noise can be shown to be [5]

∆pt = Aρ ± σ
√

A − L , 〈L〉 = O
(

αs · Aρ ln
pt

Aρ

)

, (1)

where ρ, the level of diffuse noise, corresponds to the amount of transverse momentum added to the
event per unit area, for example by minimum bias particles. These particles are taken to be dense
on the scale R of the jet algorithm, as is bound to be the case with many minimum bias events, and
σ is the standard deviation of the resulting noise when measured across many regions of unit area.
At high-luminosity at LHC ρ is expected [9] to be ∼ 10 − 20GeV per unit area. The first term in
eq. (1) is therefore the geometrical contamination of the jet and is associated with an uncertainty
(second term) because of fluctuations in the noise from point to point in the event. The third term,
L, accounts for the occasional loss (or the even more occasional gain) of part of the jet’s contents,
due to the fact that jets can be modified when clustered in the presence of diffuse noise, as some
of the particles originally clustered into one jet can instead end up in a different one. One should
be aware that this contribution has a very non-Gaussian distribution — usually it is small, but a
fraction αs of the time it can become comparable to Aρ.2

1The terms noise and background are specifically not intended to refer to experimental (e.g. electronics) noise,
though it is not inconceivable that such experimental noise could be treated on a similar footing.

2As discussed in [5], the average value of L is dominated by situations in which an emission p2 is near the edge
of the jet with Aρ ! p2t ! pt and is lost from the jet. This is a very rare occurrence, ∼ αsdp2t/p2t · (Aρ/p2t), with
the second (suppression) factor embodying the fact that as the emission p2 is made harder it is progressively more
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Figure 12: Numerical results for the diffuse effective back-reaction ‘area’, B(L,G)
JA,R (pt2/ρ), for the kt

and Cambridge/Aachen algorithms, with the point-like results b(L,G)
JA,1 (pt2/ptm) shown for comparison

also. Results obtained for R = 1 and verified also for R = 0.7.

form is rather similar though the normalisations are somewhat smaller (by a factor of 2 for loss, a
factor ∼ 10 for gain). The asymptotic large-pt2 behaviours are observed to be
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As in the point-like case we can calculate the mean change in jet transverse momentum due to back
reaction and we obtain

〈∆p(G−L)
t,JA,R〉 "
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dpt2pt2




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−

dP (L)
JA,R

dpt2


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with
BJA,R = lim
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. (74)

Even though b(L,G)
JA,R had pt2/ptm as its argument and B(L,G)

JA,R has pt2/ρ, the final expressions for
the average back-reaction in the point-like and diffuse cases, eqs. (65), (73), have almost identical
forms — in particular the overall scale appearing in each is ρ and the only difference appears in the
denominator for the argument of the logarithm. The coefficients are slightly smaller,

Bkt,R = BCam,R " −0.10πR2 , (75a)

BSISCone,R = 0 , (75b)

and will again translate to modest effects compared to the overall minimum-bias contamination in

the jets. Note also however that in general the scaling with R of b(L/G)
kt,R

(pt2/ptm) and B(L/G)
kt,R

(pt2/ρ) is

subtly different. The former truly behaves like an area, in that b(L/G)
kt,R

(pt2/ptm)/R2 is R-independent;

the latter instead has the property that it is B(L/G)
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(R2pt2/ρ) that is R-independent.
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µj much closer to the original pµj value

I Subtraction improves sizably the jet resolution (event-by-event correction)

I No cut in the pT of particles required (reduce potential biases)

I Subtraction is not meant to be perfect: various (in general small,
computable) effects complicate picture: fluctuations of the background
σρ (observable)

2 The method

We propose an event-by-event, and jet-by-jet, pileup subtraction approach that is suitable for
any infrared safe jet algorithm, and which performs the corrections after the jet finding has been
carried out, so as to ensure independence on the specific detector setup. It is based on two novel
ingredients: i) the measurement of each jet’s susceptibility to contamination from diffuse noise and
ii) an essentially parameter-free technique to measure the level, ρ, of this diffuse noise in any given
event, where by noise (or also ‘background’), we refer to any form of diffuse contamination in the
event, usually due to minimum-bias pileup and to some extent the underlying event.1

i) The jet’s susceptibility to contamination is embodied in the jet area, A, measured on the
rapidity (y), azimuth (φ) cylinder. The jet area is a non-trivial (and novel) concept insofar as a
jet consists of pointlike particles, which themselves have no intrinsic area. To define a sensible
area one therefore adds additional, infinitely soft particles (ghosts) and identifies the region in y, φ
where those ghosts are clustered with a given jet. The extent of this region gives a measure of the
(dimensionless) jet area.

The jet area is different for each jet and depends on the details of its substructure, and to some
extent on the event as a whole. Contrary to common wisdom, jet areas can differ significantly
from πR2 even for more geometrical jet definitions, such as cone algorithms (R here is the radius
parameter in the jet definition). Consequently only the measured area for each jet provides reliable
information about its level of potential contamination.

The exact details of the determination of the jet areas (for example the choice of distribution of
infinitely soft particles) are largely irrelevant here, and are instead to be found discussed at length
in [5], which also presents studies of the properties of jet areas for a range of jet algorithms. The
practical measurement of the jet areas is carried out using the FastJet package [6] and relies on
the fast computational strategies for jet clustering described in [7, 8].

Given a suitable definition of jet area, the modification of a jet’s transverse momentum (pt) by
diffuse noise can be shown to be [5]

∆pt = Aρ ± σ
√

A − L , 〈L〉 = O
(

αs · Aρ ln
pt

Aρ

)

, (1)

where ρ, the level of diffuse noise, corresponds to the amount of transverse momentum added to the
event per unit area, for example by minimum bias particles. These particles are taken to be dense
on the scale R of the jet algorithm, as is bound to be the case with many minimum bias events, and
σ is the standard deviation of the resulting noise when measured across many regions of unit area.
At high-luminosity at LHC ρ is expected [9] to be ∼ 10 − 20GeV per unit area. The first term in
eq. (1) is therefore the geometrical contamination of the jet and is associated with an uncertainty
(second term) because of fluctuations in the noise from point to point in the event. The third term,
L, accounts for the occasional loss (or the even more occasional gain) of part of the jet’s contents,
due to the fact that jets can be modified when clustered in the presence of diffuse noise, as some
of the particles originally clustered into one jet can instead end up in a different one. One should
be aware that this contribution has a very non-Gaussian distribution — usually it is small, but a
fraction αs of the time it can become comparable to Aρ.2

1The terms noise and background are specifically not intended to refer to experimental (e.g. electronics) noise,
though it is not inconceivable that such experimental noise could be treated on a similar footing.

2As discussed in [5], the average value of L is dominated by situations in which an emission p2 is near the edge
of the jet with Aρ ! p2t ! pt and is lost from the jet. This is a very rare occurrence, ∼ αsdp2t/p2t · (Aρ/p2t), with
the second (suppression) factor embodying the fact that as the emission p2 is made harder it is progressively more
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Figure 12: Numerical results for the diffuse effective back-reaction ‘area’, B(L,G)
JA,R (pt2/ρ), for the kt

and Cambridge/Aachen algorithms, with the point-like results b(L,G)
JA,1 (pt2/ptm) shown for comparison

also. Results obtained for R = 1 and verified also for R = 0.7.

form is rather similar though the normalisations are somewhat smaller (by a factor of 2 for loss, a
factor ∼ 10 for gain). The asymptotic large-pt2 behaviours are observed to be
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As in the point-like case we can calculate the mean change in jet transverse momentum due to back
reaction and we obtain

〈∆p(G−L)
t,JA,R〉 "
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ptm

dpt2pt2




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with
BJA,R = lim
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Even though b(L,G)
JA,R had pt2/ptm as its argument and B(L,G)

JA,R has pt2/ρ, the final expressions for
the average back-reaction in the point-like and diffuse cases, eqs. (65), (73), have almost identical
forms — in particular the overall scale appearing in each is ρ and the only difference appears in the
denominator for the argument of the logarithm. The coefficients are slightly smaller,

Bkt,R = BCam,R " −0.10πR2 , (75a)

BSISCone,R = 0 , (75b)

and will again translate to modest effects compared to the overall minimum-bias contamination in

the jets. Note also however that in general the scaling with R of b(L/G)
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subtly different. The former truly behaves like an area, in that b(L/G)
kt,R

(pt2/ptm)/R2 is R-independent;
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I Subtraction improves sizably the jet resolution (event-by-event correction)

I No cut in the pT of particles required (reduce potential biases)

I Subtraction is not meant to be perfect: various (in general small,
computable) effects complicate picture: fluctuations of the background
σρ (observable)

2 The method

We propose an event-by-event, and jet-by-jet, pileup subtraction approach that is suitable for
any infrared safe jet algorithm, and which performs the corrections after the jet finding has been
carried out, so as to ensure independence on the specific detector setup. It is based on two novel
ingredients: i) the measurement of each jet’s susceptibility to contamination from diffuse noise and
ii) an essentially parameter-free technique to measure the level, ρ, of this diffuse noise in any given
event, where by noise (or also ‘background’), we refer to any form of diffuse contamination in the
event, usually due to minimum-bias pileup and to some extent the underlying event.1

i) The jet’s susceptibility to contamination is embodied in the jet area, A, measured on the
rapidity (y), azimuth (φ) cylinder. The jet area is a non-trivial (and novel) concept insofar as a
jet consists of pointlike particles, which themselves have no intrinsic area. To define a sensible
area one therefore adds additional, infinitely soft particles (ghosts) and identifies the region in y, φ
where those ghosts are clustered with a given jet. The extent of this region gives a measure of the
(dimensionless) jet area.

The jet area is different for each jet and depends on the details of its substructure, and to some
extent on the event as a whole. Contrary to common wisdom, jet areas can differ significantly
from πR2 even for more geometrical jet definitions, such as cone algorithms (R here is the radius
parameter in the jet definition). Consequently only the measured area for each jet provides reliable
information about its level of potential contamination.

The exact details of the determination of the jet areas (for example the choice of distribution of
infinitely soft particles) are largely irrelevant here, and are instead to be found discussed at length
in [5], which also presents studies of the properties of jet areas for a range of jet algorithms. The
practical measurement of the jet areas is carried out using the FastJet package [6] and relies on
the fast computational strategies for jet clustering described in [7, 8].

Given a suitable definition of jet area, the modification of a jet’s transverse momentum (pt) by
diffuse noise can be shown to be [5]

∆pt = Aρ ± σ
√

A − L , 〈L〉 = O
(

αs · Aρ ln
pt

Aρ

)

, (1)

where ρ, the level of diffuse noise, corresponds to the amount of transverse momentum added to the
event per unit area, for example by minimum bias particles. These particles are taken to be dense
on the scale R of the jet algorithm, as is bound to be the case with many minimum bias events, and
σ is the standard deviation of the resulting noise when measured across many regions of unit area.
At high-luminosity at LHC ρ is expected [9] to be ∼ 10 − 20GeV per unit area. The first term in
eq. (1) is therefore the geometrical contamination of the jet and is associated with an uncertainty
(second term) because of fluctuations in the noise from point to point in the event. The third term,
L, accounts for the occasional loss (or the even more occasional gain) of part of the jet’s contents,
due to the fact that jets can be modified when clustered in the presence of diffuse noise, as some
of the particles originally clustered into one jet can instead end up in a different one. One should
be aware that this contribution has a very non-Gaussian distribution — usually it is small, but a
fraction αs of the time it can become comparable to Aρ.2

1The terms noise and background are specifically not intended to refer to experimental (e.g. electronics) noise,
though it is not inconceivable that such experimental noise could be treated on a similar footing.

2As discussed in [5], the average value of L is dominated by situations in which an emission p2 is near the edge
of the jet with Aρ ! p2t ! pt and is lost from the jet. This is a very rare occurrence, ∼ αsdp2t/p2t · (Aρ/p2t), with
the second (suppression) factor embodying the fact that as the emission p2 is made harder it is progressively more
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Figure 12: Numerical results for the diffuse effective back-reaction ‘area’, B(L,G)
JA,R (pt2/ρ), for the kt

and Cambridge/Aachen algorithms, with the point-like results b(L,G)
JA,1 (pt2/ptm) shown for comparison

also. Results obtained for R = 1 and verified also for R = 0.7.

form is rather similar though the normalisations are somewhat smaller (by a factor of 2 for loss, a
factor ∼ 10 for gain). The asymptotic large-pt2 behaviours are observed to be
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As in the point-like case we can calculate the mean change in jet transverse momentum due to back
reaction and we obtain

〈∆p(G−L)
t,JA,R〉 "
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with
BJA,R = lim
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Even though b(L,G)
JA,R had pt2/ptm as its argument and B(L,G)

JA,R has pt2/ρ, the final expressions for
the average back-reaction in the point-like and diffuse cases, eqs. (65), (73), have almost identical
forms — in particular the overall scale appearing in each is ρ and the only difference appears in the
denominator for the argument of the logarithm. The coefficients are slightly smaller,

Bkt,R = BCam,R " −0.10πR2 , (75a)

BSISCone,R = 0 , (75b)

and will again translate to modest effects compared to the overall minimum-bias contamination in

the jets. Note also however that in general the scaling with R of b(L/G)
kt,R

(pt2/ptm) and B(L/G)
kt,R

(pt2/ρ) is

subtly different. The former truly behaves like an area, in that b(L/G)
kt,R

(pt2/ptm)/R2 is R-independent;

the latter instead has the property that it is B(L/G)
kt,R

(R2pt2/ρ) that is R-independent.
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Jets in heavy ion collisions Jet clustering technology Modeling medium effects Jets in medium

Filtering
Sequential recombination jet algorithms suffer from sizable UE corrections
From original kT paper S. Catani et al., Nucl.Phys.B406:187-224,1993.

Improve performance with automatic post-processing: Filtering

1. Cluster all the particles in the event with a given jet definition (JA1,R1).

2. Take each of the jets of event and cluster its constituents with another
jet definition (JA2,R2) with R2 < R1 →Set of subjets of original jet.

3. Keep the nsj subjets of a jet with largest pT and throw way the
remaining subjets.

4. Original jets are replaced merging the selected subjets

(See J. Butterworth et al., (arXiv:0802.2470 [hep-ph]))
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Jet shape

RAA (φ(r)) ≡ φpp+med+PbPb+sub(r)/φpp(r)

j/Rsjr = R
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With PbPb + subtraction

Jet shape

Juan Rojo INFN Milano

Medium tomography with jet clustering algorithms



Jets in heavy ion collisions Jet clustering technology Modeling medium effects Jets in medium

UE Background simulation
Simulation of the soft background expected in HIC at the LHC → embed pp
event into a min-bias PbPb event @ 5.5 ATeV (central collisions b ≤ 3 fm)
simulated with PSM from N. S. Amelin, et al., Eur. Phys. J. C 22 (2001) 149.
PSM is a two-component MC model for HIC:

1. Soft collisions leading to strings (DPM: valence strings ∝ Npart + sea
strings ∝ Ncoll) which might interact forming color ropes

2. Semi-hard collisions generated through Pythia (+ GRV94 + EKS98)

Options 〈Nparticles〉
fi

dN
dη

˛̨̨
η=0

fl fi
dNch
dη

˛̨̨
η=0

fl
PbPb with semi-hard events (SH) 4.7 · 104 5350 3020

PbPb wo semi-hard events (NSH) 2.7 · 104 2230 1230

Azimuthal asymmetry generated trough an induced elliptic flow with v2 = 0.05
for pT ≤ 4 GeV particles
Effect of different MC models for HIC background → work in progress
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Background subtraction in practice
Inclusive jet distribution in pp dijet events embedded in PbPb events

kT algorithm with R = 0.4 kT algorithm with R = 0.4 kT algorithm with

R = 0.4 Cam/Aa(filt) algorithm with R = 0.4 Cam/Aa(filt) algorithm with

R = 0.4 Cam/Aa(filt) algorithm with R = 0.4
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qhL = 0, with PbPb, subtraction
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Background subtraction
Data-driven method to estimate the background density per unit area ρ (from
the Underlying Event) on an event-by-event basis
Key observation → For UE jets, pjet

T ∼ Ajet

ρ ≡ median

»
ptj

Aj

ff–
(2)

and subtract it from the hard jets using its area Aj

p
(sub)
µj = pµj − Aµj ρ± σρ

p
Aj (3)

Circular range of D = 3R centered on jet axis (reduce sensitivity to UE
structure)

Jet1

Jet2

φ

y
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Background subtraction
Data-driven method to estimate the background density per unit area ρ (from
the Underlying Event) on an event-by-event basis
Key observation → For UE jets, pjet

T ∼ Ajet

ρ ≡ median

»
ptj

Aj

ff–
(2)

and subtract it from the hard jets using its area Aj

p
(sub)
µj = pµj − Aµj ρ± σρ

p
Aj (3)

Circular range of D = 3R centered on jet axis (reduce sensitivity to UE
structure)

I Subtraction improves sizably the jet resolution

I Subtraction brings p
(sub)
µj close to the original pµj value

I However, subtraction is not meant to be perfect: various (small,
computable) effects complicate picture: fluctuations of the background
σρ (observable), back-reaction
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Figure 12: Numerical results for the diffuse effective back-reaction ‘area’, B(L,G)
JA,R (pt2/ρ), for the kt

and Cambridge/Aachen algorithms, with the point-like results b(L,G)
JA,1 (pt2/ptm) shown for comparison

also. Results obtained for R = 1 and verified also for R = 0.7.

form is rather similar though the normalisations are somewhat smaller (by a factor of 2 for loss, a
factor ∼ 10 for gain). The asymptotic large-pt2 behaviours are observed to be

B(L)
kt,R

(pt2/ρ) " B(L)
Cam,R(pt2/ρ) " 0.11πR2 ρ

pt2
(72a)

B(G)
kt,R

(pt2/ρ) " B(G)
Cam,R(pt2/ρ) " 0.013πR2 ρ

pt2
(72b)

As in the point-like case we can calculate the mean change in jet transverse momentum due to back
reaction and we obtain

〈∆p(G−L)
t,JA,R〉 "

∫ pt1

ptm

dpt2pt2





dP (G)
JA,R

dpt2
−

dP (L)
JA,R

dpt2



 = BJA,R ρ · C1

πb0
ln

αs(ρR3)

αs(pt1R)
, (73)

with
BJA,R = lim

pt2→∞

pt2

ρ

(

B(G)
JA,R(pt2/ρ) − B(L)

JA,R(pt2/ρ)
)

. (74)

Even though b(L,G)
JA,R had pt2/ptm as its argument and B(L,G)

JA,R has pt2/ρ, the final expressions for
the average back-reaction in the point-like and diffuse cases, eqs. (65), (73), have almost identical
forms — in particular the overall scale appearing in each is ρ and the only difference appears in the
denominator for the argument of the logarithm. The coefficients are slightly smaller,

Bkt,R = BCam,R " −0.10πR2 , (75a)

BSISCone,R = 0 , (75b)

and will again translate to modest effects compared to the overall minimum-bias contamination in

the jets. Note also however that in general the scaling with R of b(L/G)
kt,R

(pt2/ptm) and B(L/G)
kt,R

(pt2/ρ) is

subtly different. The former truly behaves like an area, in that b(L/G)
kt,R

(pt2/ptm)/R2 is R-independent;

the latter instead has the property that it is B(L/G)
kt,R

(R2pt2/ρ) that is R-independent.
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Medium effects
Medium effects from ACSW Armesto et al, JHEP 0802:048,2008: radiative
energy loss through modification of vacuum splitting functions.

Ptot(z) = Pvac(z) + ∆P(z , t) , ∆P(z , t) ' 2πt

αs

dImed

dzdt
, q̂ ≡

D
q2,med
⊥

E
λ

Implemented in modified Pythia 6.4 → Q-PYTHIA
Samples generated for pp → gg for medium length L = 2 fm and transport
coefficient 2 GeV2 ≤ q̂L ≤ 20 GeV2

ω
dI

dω dk⊥
=

αs CR

(2π)2 ω2
2Re

Z ∞

0

dyl

Z ∞

yl

dȳl

Z
du e−ik⊥·u e

− 1
2

R∞
ȳl

dξ n(ξ) σ(u)

× ∂

∂y
· ∂

∂u

Z u=r(ȳl )

y=0=r(yl )

Dr exp

»
i

Z ȳl

yl

dξ
ω

2

„
ṙ2 − n(ξ)σ (r)

i ω

«–
.

ω
dI

dω dk⊥
= ω

dI vac

dω dk⊥
+ ω

dImed

dω dk⊥
, n(ξ) σ(r) ' 1

2
q̂(ξ) r2 , ω = (1− z)E
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Medium effects
Medium effects from ACSW Armesto et al, JHEP 0802:048,2008: radiative
energy loss through modification of vacuum splitting functions.

Ptot(z) = Pvac(z) + ∆P(z , t) , ∆P(z , t) ' 2πt

αs

dImed

dzdt
, q̂ ≡

D
q2,med
⊥

E
λ

Nuclear suppression RAA(pjet
T ) ≡

“
dσmed/dpjet

T

”.“
dσvac/dpjet

T

”
for R = 0.4:

jet

T
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Medium effects
Medium effects from ACSW Armesto et al, JHEP 0802:048,2008: radiative
energy loss through modification of vacuum splitting functions.

Ptot(z) = Pvac(z) + ∆P(z , t) , ∆P(z , t) ' 2πt

αs

dImed

dzdt
, q̂ ≡

D
q2,med
⊥

E
λ

Note that our jet finding technology can be applied to study the effects of any
model of medium effects and jet quenching:
Our program:

1. Study jet finding in HIC for a generic medium effects model (this talk)

2. Determine which observables are more suited to discriminate between
models of jet quenching

3. Useful tools: Implementation of different models in practical Monte Carlo
showering programs
JEWEL, K. Zapp et al, arXiv:0804.3568, see also U. Wiedemann’s talk
T. Renk, arXiv:0806.0305
L. Cunqueiro talk
others: HYDJET, PYQUENCH , ...
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A typical dijet event

pp → gg events with pjet
T ∼ 100 GeV and R = 0.4 - No PbPb
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A typical dijet event

pp → gg events with pjet
T ∼ 100 GeV and R = 0.4 - PbPb model NSH
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A typical dijet event

pp → gg events with pjet
T ∼ 100 GeV and R = 0.4 - PbPb model SH
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Speed
Modern jet finding tools allow fast implementations to cope with large LHC
multiplicities N ∼ 800− 4000 for pp, N ∼ 40000 for HIC
In FastJet, seq. reco. algs. like kT , the time it takes to cluster N particles
scales as as N ln N (not N3!)
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Inclusive jet distribution
RAA(pT ) for the hardest jet distribution with the kT algorithm at R = 0.5
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 alg., R=0.5TK
(pp + med)/pp
(pp + PbPb + med)/(pp + PbPb)
(pp+ PbPb + med)/pp
(pp+ PbPb + med + sub)/pp
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The Anti-kT algorithm
The Anti-kT algorithm (M. Cacciari et al., arXiv:0802.1189) has a very reduced
sensitivity to Back-Reaction:

∆pBR
T

˛̨̨
kT

∼ 5GeV , ∆pBR
T

˛̨̨
Anti−kT

∼ 1GeV

for pjet
T ∼ 100 GeV, R = 0.5, ρ ∼ 150 GeV.

j/Rsjr = R
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qhL = 20 GeV, w PbPb, sub

Jet shape
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Photon-jet correlations
Photons offer an unbiased calibration of jet energy
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Subjet distribution
Distribution of subjets with a hard jet (the IRC safe observable related to the
hump-backed plateau)
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Quenching weights

The approach of AQSZ reproduces the quenching weights
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Jets
Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions.
Electrons and muons are fundamental, weakly coupled particles — it makes
sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

I Partons split into further partons

I Jets are a a way of thinking of the ‘original parton’

I A ‘jet’ is a fundamentally ambiguous concept (e.g. requires a resolution)

Jets are only meaningful once you’ve defined a jet algorithm.
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Sequential recombination algorithms

Example: the kt algorithm:

1. Calculate (or update) distances between all particles i and j , and between
i and beam:

dij = min(k2
ti , k

2
tj)

∆R2
ij

R2
, diB = k2

ti , ∆R2
ij = ∆y 2

ij + ∆φ2
ij

2. Find smallest of dij and diB

I If dij is smallest, recombine i and j (add result to particle list,
remove i , j)

I if diB is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.

One parameter: R (like cone radius), whose natural value is 1
kt algorithm attempts approximate inversion of the QCD shower branching
process → Theoretical sound basis.
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kt algorithm in action (R = 1)
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Jet Folklore

Jet discussions: polarised, often driven by unquantified statements

Several more include: Infrared safety does not matter from a practical point of
view, kT is worse at hadron colliders than cone, kT too slow ...
Instead let’s turn this discussion quantitative!
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Infrared safety
For JetClu (similar to Atlas cone), half of events fails IRC safety tests.
Even for the MidPoint cone algorithm, 15% of events fail the test!
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The area of a jet
The area of a jet is only meaningful for IRC algorithms.
Active area → Cover the (η, φ) plane with ghosts (very soft particles) and
cluster the event → Number of ghosts proportional to jet area (Cacciari, Salam
and Soyez 08).
Jet area differs greatly from naive πR2 even for cone algorithms.
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Background subtraction

Jet areas provide a technique to subtract Underlying Event and specially the
Pile-up. (important at high-Lumi LHC) (Cacciari and Salam 07).

Determine the noise density per unit area ρ = median
h
pjet

T /Ajet

i
and subtract:

psub
jet = pjet − Ajetρ
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Figure 6: Subtraction in the context of top reconstruction for Tevatron kinematics (simulated with
Pythia 6.325, mt = 175 GeV), in the lepton + jets decay channel (ρ extracted with the kt algorithm and
R = 0.5, using jets with |y| < 3).

reference we include also the distribution obtained with neither pileup nor underlying event. One
sees that the subtraction brings one rather close to this result. The same feature is observed for
the SISCone algorithm, while for the kt algorithm the coincidence is not as quite good, there being
an over-subtraction of a couple of GeV on the position of the peak, perhaps attributable to a
slightly greater fragility of kt-algorithm jets (i.e. a larger typical contribution from the third term
of eq. (1) [5]). We have also examined top reconstruction for low-luminosity LHC running. We find
results that are rather similar to those for the Tevatron.

The high background contamination example that we consider for our procedure is that of
heavy-ion collisions at the LHC, where a single Pb Pb collision produces a diffuse background with
a transverse momentum density ρ about ten times larger than that of high luminosity pp pileup,
i.e. ∼ 250 GeV. This is challenging because jets normally considered as hard, with a pt of order
50–100 GeV or more, can be swamped by the background. Fig. 7 (left), the analogue of fig. 1a
but now for a central Pb Pb collision simulated with Hydjet [13], shows that most jets still lie in a
collimated band. This band however depends noticeably on rapidity y (for reasons related to the
heavy-ion collision dynamics), so rather than using a constant ρ, we introduce a function ρHI(y).
We parametrise it as ρHI(y) = a+by2, where the coefficients a and b are to be fitted for each event.4

Despite the huge background, our subtraction procedure remains effective even at moderate pt’s,
as illustrated by the inclusive jet spectrum shown in fig. 7 (right). One notes also the presence of
a steep tail at negative pt. It has the same origin as the negative shifts in fig. 3b–d, i.e. principally
the fact that local fluctuations in the background level cause some jets’ contamination to be lower
than Aρ. The width of this tail at negative pt (note the logarithmic ordinate scale) provides an
alternative estimate on the resolution associated with the subtraction.

4 Conclusions

We have here introduced a new procedure for correcting jets for pileup and underlying event con-
tamination. It is based on the use of infrared-safe jet algorithms and the novel concept of jet area.
On an event-by-event basis it estimates the level of the diffuse background in the event and then
uses this estimate to correct each jet in proportion to its area. The procedure is entirely data

4Note that: 1) the systematically large pt of the many background jets means that the fit will only be minimally
biased by any truly hard jets — therefore it is not necessary to resort to techniques such as the use of the median in
order to obtain robust results for ρ; 2) for non-central collisions ρ is expected to have non-negligible dependence also
on φ, and one may generalise both fit and median-based procedures to deal with these more complex situations.
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QCD flowchart

Jet (definitions) provide central link between expt., “theory” and theory
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Infrared safety

Cone algorithms have been known to suffer from Infrared and Collinear
unsafety for many years.
For the CDF MidPoint cone algorithm:

Observable 1st miss cones at Last meaningful order
Inclusive jet cross section NNLO NLO
W/Z/H + 1 jet cross section NNLO NLO
3 jet cross section NLO LO
W/Z/H + 2 jet cross section NLO LO
jet masses in 3 jets, W/Z/H + 2 jets LO none

Table 2: Summary of the order (α4
s or α3

sαEW ) at which stable cones are missed in various
processes with a midpoint algorithm, and the corresponding last order that can be mean-
ingfully calculated. Infrared unsafety first becomes visible one order beyond that at which
one misses stable cones.

will be parametrically as large as the NLO term.4 The situation for a range of processes is
summarised in table 2.

4 An exact seedless cone jet definition

One way in which one could imagine trying to ‘patch’ the seed-based iterative cone jet-
algorithm to address the above problem would be to use midpoints between all pairs of
particles as seeds, as well as midpoints between the initial set of stable cones.5 However
it seems unlikely that this would resolve the fundamental problem of being sure that one
will systematically find all solutions of eq. (1) for any ensemble of particles.

Instead it is more appropriate to examine exhaustive, non-iterative approaches to the
problem, i.e. an exact seedless cone jet algorithm, one that provably finds all stable cones,
as advocated already some time ago in [16].

For very low multiplicities N , one approach is that suggested in section 3.3.3 of [6] and
used in the MCFM [18] and NLOJet [19] next-to-leading order codes. One first identifies
all possible subsets of the N particles in the event. For each subset S, one then determines
the rapidity (yS) and azimuth (φS) of the total momentum of the subset, pS =

∑

i∈S pi

and then checks whether a cone centred on yS , φS contains all particles in S but no other
particles. If this is the case then S corresponds to a stable cone. This procedure guarantees
that all solutions to eq. (1) will be found.

In the above procedure there are ∼ 2N distinct subsets of particles and establishing
whether a given subset corresponds to a stable cone takes time O (N). Therefore the
time to identify all stable cones is O

(

N2N
)

. For the values of N (≤ 4) relevant in fixed-
order calculations, N2N time is manageable, however as soon as one wishes to consider

4As concerns the measurement [10], the discussion is complicated by the confusion surrounding the
nomenclature of the seedless and midpoint algorithms — while it seems that the measurement was carried
out with a true midpoint algorithm, the calculation probably used the ‘midpoint’ as defined in section
3.4.2 of [6] (cf. footnote 2), which is actually the seedless algorithm, i.e. the measurements and theoretical
predictions are based on different algorithms.

5This option was actually mentioned in [6] but rejected at the time as impractical.

8

Theory investment in NLO computations: ∼ 50 people × 10 years ∼ 30− 50

million $ → Lost if IRC unsafe jet algorithms used!

Juan Rojo INFN Milano

Medium tomography with jet clustering algorithms



Jets in heavy ion collisions Jet clustering technology Modeling medium effects Jets in medium

Infrared safety

Cone algorithms have been known to suffer from Infrared and Collinear
unsafety for many years.
For the CDF MidPoint cone algorithm:

Observable 1st miss cones at Last meaningful order
Inclusive jet cross section NNLO NLO
W/Z/H + 1 jet cross section NNLO NLO
3 jet cross section NLO LO
W/Z/H + 2 jet cross section NLO LO
jet masses in 3 jets, W/Z/H + 2 jets LO none

Table 2: Summary of the order (α4
s or α3

sαEW ) at which stable cones are missed in various
processes with a midpoint algorithm, and the corresponding last order that can be mean-
ingfully calculated. Infrared unsafety first becomes visible one order beyond that at which
one misses stable cones.

will be parametrically as large as the NLO term.4 The situation for a range of processes is
summarised in table 2.

4 An exact seedless cone jet definition

One way in which one could imagine trying to ‘patch’ the seed-based iterative cone jet-
algorithm to address the above problem would be to use midpoints between all pairs of
particles as seeds, as well as midpoints between the initial set of stable cones.5 However
it seems unlikely that this would resolve the fundamental problem of being sure that one
will systematically find all solutions of eq. (1) for any ensemble of particles.

Instead it is more appropriate to examine exhaustive, non-iterative approaches to the
problem, i.e. an exact seedless cone jet algorithm, one that provably finds all stable cones,
as advocated already some time ago in [16].

For very low multiplicities N , one approach is that suggested in section 3.3.3 of [6] and
used in the MCFM [18] and NLOJet [19] next-to-leading order codes. One first identifies
all possible subsets of the N particles in the event. For each subset S, one then determines
the rapidity (yS) and azimuth (φS) of the total momentum of the subset, pS =

∑

i∈S pi

and then checks whether a cone centred on yS , φS contains all particles in S but no other
particles. If this is the case then S corresponds to a stable cone. This procedure guarantees
that all solutions to eq. (1) will be found.

In the above procedure there are ∼ 2N distinct subsets of particles and establishing
whether a given subset corresponds to a stable cone takes time O (N). Therefore the
time to identify all stable cones is O

(

N2N
)

. For the values of N (≤ 4) relevant in fixed-
order calculations, N2N time is manageable, however as soon as one wishes to consider

4As concerns the measurement [10], the discussion is complicated by the confusion surrounding the
nomenclature of the seedless and midpoint algorithms — while it seems that the measurement was carried
out with a true midpoint algorithm, the calculation probably used the ‘midpoint’ as defined in section
3.4.2 of [6] (cf. footnote 2), which is actually the seedless algorithm, i.e. the measurements and theoretical
predictions are based on different algorithms.

5This option was actually mentioned in [6] but rejected at the time as impractical.

8

Theory investment in NLO computations: ∼ 50 people × 10 years ∼ 30− 50

million $ → Lost if IRC unsafe jet algorithms used!

Juan Rojo INFN Milano

Medium tomography with jet clustering algorithms



Jets in heavy ion collisions Jet clustering technology Modeling medium effects Jets in medium

Infrared safety

Cone algorithms have been known to suffer from Infrared and Collinear
unsafety for many years.
For the CDF MidPoint cone algorithm:

Observable 1st miss cones at Last meaningful order
Inclusive jet cross section NNLO NLO
W/Z/H + 1 jet cross section NNLO NLO
3 jet cross section NLO LO
W/Z/H + 2 jet cross section NLO LO
jet masses in 3 jets, W/Z/H + 2 jets LO none

Table 2: Summary of the order (α4
s or α3

sαEW ) at which stable cones are missed in various
processes with a midpoint algorithm, and the corresponding last order that can be mean-
ingfully calculated. Infrared unsafety first becomes visible one order beyond that at which
one misses stable cones.

will be parametrically as large as the NLO term.4 The situation for a range of processes is
summarised in table 2.

4 An exact seedless cone jet definition

One way in which one could imagine trying to ‘patch’ the seed-based iterative cone jet-
algorithm to address the above problem would be to use midpoints between all pairs of
particles as seeds, as well as midpoints between the initial set of stable cones.5 However
it seems unlikely that this would resolve the fundamental problem of being sure that one
will systematically find all solutions of eq. (1) for any ensemble of particles.

Instead it is more appropriate to examine exhaustive, non-iterative approaches to the
problem, i.e. an exact seedless cone jet algorithm, one that provably finds all stable cones,
as advocated already some time ago in [16].

For very low multiplicities N , one approach is that suggested in section 3.3.3 of [6] and
used in the MCFM [18] and NLOJet [19] next-to-leading order codes. One first identifies
all possible subsets of the N particles in the event. For each subset S, one then determines
the rapidity (yS) and azimuth (φS) of the total momentum of the subset, pS =

∑

i∈S pi

and then checks whether a cone centred on yS , φS contains all particles in S but no other
particles. If this is the case then S corresponds to a stable cone. This procedure guarantees
that all solutions to eq. (1) will be found.

In the above procedure there are ∼ 2N distinct subsets of particles and establishing
whether a given subset corresponds to a stable cone takes time O (N). Therefore the
time to identify all stable cones is O

(

N2N
)

. For the values of N (≤ 4) relevant in fixed-
order calculations, N2N time is manageable, however as soon as one wishes to consider

4As concerns the measurement [10], the discussion is complicated by the confusion surrounding the
nomenclature of the seedless and midpoint algorithms — while it seems that the measurement was carried
out with a true midpoint algorithm, the calculation probably used the ‘midpoint’ as defined in section
3.4.2 of [6] (cf. footnote 2), which is actually the seedless algorithm, i.e. the measurements and theoretical
predictions are based on different algorithms.

5This option was actually mentioned in [6] but rejected at the time as impractical.

8

Theory investment in NLO computations: ∼ 50 people × 10 years ∼ 30− 50

million $ → Lost if IRC unsafe jet algorithms used!

Juan Rojo INFN Milano

Medium tomography with jet clustering algorithms



Jets in heavy ion collisions Jet clustering technology Modeling medium effects Jets in medium

Analytical understanding of jets
The pT of a jet gets modified by perturbative corrections, hadronisation and
underlying event (Dasgupta, Magnea and Salam 07)

δppert
T = αsLFpT ln R/π +O (R)

δphadr
T = −2CFA (µI ) /R +O (R)

δpUE
T = ΛUER2/2 +O

“
R4
”

ΛUE ∼
√

s
ω
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UE Background simulation

Simulation of the soft background expected in HIC at the LHC →
embed pp event into a min-bias PbPb event @ 5.5 ATeV (central
collisions b ≤ 3 fm) simulated with PSM from N. S. Amelin, et al.,
Eur. Phys. J. C 22 (2001) 149.
PSM is a two-component MC model for HIC:

1. Soft collisions leading to strings (DPM: valence strings
∝ Npart + sea strings ∝ Ncoll) which might interact forming
color ropes

2. Semi-hard collisions generated through Pythia (+ GRV94 +
EKS98)
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UE Background simulation

Two options (different multiplicity and y and pT spectra) studied for the UE
MC background:

I Only soft collisions, no semi-hard collisions (NSH): easy scenario

I With semi-hard collisions (SH): conservative scenario

Process
˙
Nparticles

¸ fi
dN
dη

˛̨̨
η=0

fl fi
dNch
dη

˛̨̨
η=0

fl D
ρ(η,φ)=(0,0)

E
T [s]

pp → gg 160 30 15 0.5 GeV 2 · 10−4

pp → gg(+PbPb/SH) 4.7 · 104 5350 3020 450 GeV 1.2

pp → gg(+PbPb/NSH) 2.7 · 104 2230 1230 150 GeV 0.2

Clustering timings with the kT algorithm with a Intel(R)Xeon 2.66 Ghz
Jet clustering timings scales as Npart ln Npart

All particles of the event included in clustering, no pT cut
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Inclusive jet distribution
pjet

T [GeV] JetAlg MC back Mis-ID jets σreco
pT

[GeV]

100 kT NSH 3% 11

SH 7% 18

Cam/Aa(filt) NSH 1% 8

SH 3% 14

50 kT NSH 8% 9

SH 18% 15

Cam/Aa(filt) NSH 3% 7

SH 12% 13

I The σreco
pT

of the subtracted jets is not very sensitive to absolute pjet
T scale

I In the good(bad) background scenario, NSH(SH), pjet
T = 50 GeV jets can

be reconstructed without cuts in pT of input particles with relative
uncertainty (σreco

pT
/pjet

T ∼ 0.15(0.26))

I Medium effects [in this particular model] (L = 2 fm, q̂L = 20 GeV2) can
be discriminated down to pjet

T ∼ 50 GeV jets
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Inclusive jet distribution
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