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Jets in heavy ion collisions

Jets in heavy ion collisions

Jets will be of paramount importance to fully exploit the potential of the HIC

program at the LHC

» Jets will be most abundant hard probes in HIC at the LHC
From CMS HIC TDR (J. Phys. G: Nucl. Part. Phys. 34 2307)

Table 1.1. The expected yield of several hard probes in 10% s PbPb and pPb LHC runs

PbPb
/SNN = 5.5TeV

£=5x10%cm2s"!

pPb
WSNN = 8.8TeV

L=14x100cm 25!

Process Yield/10° s Ref. Yield/10°s  Ref.
In| £2.4

jet (pr > 50GeV/c) 2.2x 107 [47) 1.5x 100 [48]

jet (pr > 250GeV/e)  2.2x 103 [47] 52x 100 [48]

70 3.2x10° [49] 6.8x 105  [48]
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Jets in heavy ion collisions

Jets in heavy ion collisions

Jets will be of paramount importance to fully exploit the potential of the HIC
program at the LHC

» Jets will be most abundant hard probes in HIC at the LHC

» Jets free of inclusive particle measurements biases

» Subleading jet fragments sensitive medium modeling details

» A solid pQCD baseline is required to detect and quantify medium effects

Open questions:

» To which extend can reconstructed QCD jets be disentangled from
background?

» Which is the minimum size of medium effects which could then be
disentangled?

» Can all the successful jet technology from pp be transferred to a HIC
environment?
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Jet clustering technology

JET CLUSTERING TECHNOLOGY
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Jet clustering technology

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions.

quark jet
quark quark jet? + gluon jet? hadron
(LO) (NLO) (LO) jet(s?)
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Jet clustering technology

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions. Electrons and muons are fundamental, weakly coupled particles — it
makes sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

quark jet
quark quark jet? + gluon jet? hadron
(LO) (NLO) (LO) jet(s?)
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Jet clustering technology

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions. Electrons and muons are fundamental, weakly coupled particles — it
makes sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

quark jet
quark quark jet? + gluon jet? hadron
(LO) (NLO) (LO) jet(s?)

» Partons split into further partons

> Jets are a a way of thinking of the ‘original parton’

> A ‘jet’ is a fundamentally ambiguous concept (e.g. requires a
resolution)
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Jet clustering technology

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions. Electrons and muons are fundamental, weakly coupled particles — it
makes sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

quark jet
quark quark jet? + gluon jet? hadron
(LO) (NLO) (LO) jet(s?)

» Partons split into further partons

> Jets are a a way of thinking of the ‘original parton’

> A ‘jet’ is a fundamentally ambiguous concept (e.g. requires a
resolution)

Jets (and partons!) are only meaningful once you've defined a jet algorithm.
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Jet clustering technology

Jet algorithm requirements

What is needed of a jet algorithm
» Must be infrared and collinear (IRC) safe

soft emissions shouldn’t change jets
collinear splitting shouldn't change jets
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Jet clustering technology

Jet algorithm requirements

What is needed of a jet algorithm

» Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets
collinear splitting shouldn't change jets
» Must be identical procedure at parton level, hadron-level and

experimental level
So that theory calculations can be compared to measurements
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Jet algorithm requirements

What is needed of a jet algorithm

» Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets
collinear splitting shouldn't change jets

» Must be identical procedure at parton level, hadron-level and

experimental level
So that theory calculations can be compared to measurements
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Jet clustering technology

Jet algorithm requirements

What is needed of a jet algorithm

» Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets
collinear splitting shouldn't change jets

» Must be identical procedure at parton level, hadron-level and
experimental level
So that theory calculations can be compared to measurements

What is nice for a jet algorithm

» Shouldn't be too sensitive to hadronization, underlying event and pileup,

while being sensitive to perturbative radiation.
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Jet clustering technology

Jet algorithm requirements

What is needed of a jet algorithm

» Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets
collinear splitting shouldn't change jets

» Must be identical procedure at parton level, hadron-level and

experimental level
So that theory calculations can be compared to measurements

What is nice for a jet algorithm
» Shouldn't be too sensitive to hadronization, underlying event and pileup,
while being sensitive to perturbative radiation.

» Should be realistically applicable at detector level.
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Jet clustering technology

Jet algorithm requirements

What is needed of a jet algorithm

» Must be infrared and collinear (IRC) safe
soft emissions shouldn’t change jets
collinear splitting shouldn't change jets

» Must be identical procedure at parton level, hadron-level and
experimental level
So that theory calculations can be compared to measurements

What is nice for a jet algorithm

» Shouldn't be too sensitive to hadronization, underlying event and pileup,
while being sensitive to perturbative radiation.

» Should be realistically applicable at detector level.

» Should allow fast implementations, to cope with the large particle
multiplicities at hadronic colliders and in Heavy lon Collisions.
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Jet clustering technology

k; algorithm in action (R = 1)

kt algorithm
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k; algorithm in action (R = 1)
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Jet clustering technology

k; algorithm in action (R = 1)
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Jet clustering technology

k; algorithm in action (R = 1)

d. = 1600 GeV 2
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Jet clustering technology

k; algorithm in action (R = 1)
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Jet clustering technology

k; algorithm in action (R = 1)
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Jet clustering technology

k; algorithm in action (R = 1)
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Jet clustering technology

k; algorithm in action (R = 1)

jet | d;z325000 GeV ?
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Jet clustering technology

Recent developments

Sizable progress in jet algorithms in recent years (References: G. Salam, arXiv:0906.1833)

» Fast implementation of sequential recombination clustering algorithms
(kr, Cam/Aa)

> Jet areas (Aje; # mR? in general)

|__CamiAachen, R=1
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Jet clustering technology

Recent developments

Sizable progress in jet algorithms in recent years (References: G. Salam, arXiv:0906.1833)

» Fast implementation of sequential recombination clustering algorithms
(kr, Cam/Aa)

> Jet areas (Aje; 7 mR? in general)

» New IRC safe jet algorithms (SISCone, anti-k7) — Replacement for IRC
unsafe cone algorithms (IR-SM like MidPoint and IC-PR like ATLAS

cone)

All these tools available from the FastJet package:
http://www.lpthe.jussieu.fr/salam/fastjet/

together with background subtraction methods
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Jet clustering technology

Jets in HIC — A messy environment!

pp — gg events with pjﬁt ~ 100 GeV and R = 0.4 - No PbPb
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0.4 - PbPb model NSH

~ 100 GeV and R
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pp — gg events with p’*
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- PbPb model SH

0.4

~ 100 GeV and R

>
B0
i)
o
<
=
3]
9]
3
20
153
2
o
)
-
9]
=

")
E
<
k=
[}
50
©
o0
=
=
9
2
17}
=
O
-
o
=
x
2
>
£
[
©
o
)

Jets in HIC — A messy environment!
pp — gg events with p’*
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Jet clustering technology

Jets @ RHIC

— ye\\mm’ﬂf‘/
10 TAF;PCS“ ral
_2\ Ge\l

Jets already measured at

2 STAR @ RHIC
gy 1. Important
' " information of

medium effects

Fig. 1. 21 GeV di-jet reconstructed from a central Au+Au event at /syny = 200 2

GeV in the STAR detector [ 4, 5. No suppression

observed in the

B Au+Au 0-10% gr AutAu 0-10% . s
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Jet clustering technology

Jet areas for Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis

300 T T T T T
Hard event in PbPb (LHC) cam alg.
R=04
250 FastJet |
200 | ¢ 1
3
o 150 L4 J . .
= 1.- Measure the pr of all jets in event
100 b
4 ‘i'
50 "'0 ?. w
05
o . o
0 L
-4 -2 0 2 4
y
Conceptuallly simple but powerful technique
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Jet areas for Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis

500 T T o T T
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300 | ° . o 1 1.- Measure the pr of all jets in event
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Jet clustering technology

Jet areas for Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis
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Conceptuallly simple but powerful technique

Medium tomography with jet clustering algorithms

1.- Measure the pr of all jets in event
2.- Normalize by the jet area A;
Key observation — For UE jets, p’** ~

° p(y7 @)Al‘“t

3.- Determine p(y, ¢)
(No unique strategy, HIC background
very complex structure)
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Jet areas for Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis

120 T T T T T
Hard event in PbPb (LHC) cam alg.
100 | Subtracted Py R=04 11 _ Measure the pr of all jets in event
° FastJet . .
2.- Normalize by the jet area A;
80 1 ® 1 Key observation — For UE jets, p/™" ~
;‘ 60 B p(.y7 ¢)A.jﬁt.
3 3.- Determine p(y, ¢)
o 40| 1 (Various strategy, HIC background very
complex structure)
20 - 4 Subtract p(y, ¢) from the all jets us-
& % ing its area A;
"% '5"& ~{
b) ‘
P:Ju = puj — Auj p(y, ®) (1)
20 L@
y
Conceptuallly simple but powerful technique
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Jet clustering technology

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT algorithm with R = 0.4
[ Hardest jet distribution |

PP > 09, p, =100 GeV
2500 L PbPb at sqrt{s}=5.5 TeV (NSH)

o K, algorithm

- s ghL = 0, N0 PbPb
2000 - qhL =0, with PbPb

A B ghL =0, with PbPb, subtraction
1500[ I_
1000[- Jl —Il

500 |_|
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Jet clustering technology

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT algorithm with R = 0.4
[ Hardest jet distribution |

PP >0, P, =100 GeV
2500 L PbPb at sqrt{s}=5.5 TeV (NSH)
r K, algorithm
- s ghL = 0, N0 PbPh
2000 - qhL =0, with PbPb
Y I R R ghL = 0, with PbPb, subtraction
1500[ I_
1000[- Jl —Il L1
500 |_|
‘—‘"_H““HI—J‘T‘H‘H‘"_AT
910 60 80 00 120 140 160 180 200
p, [Gev]
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Jet clustering technology

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
kT algorithm with R = 0.4
[ Hardest jet distribution |

Pp->00.p, =100 GeV
2500 - PbPb at sqrt{s}=5.5 TeV (NSH)

r K algorithm

L s ghL =0, N0 PbPb
2000 I ghL =0, with PbPb

T B D N ghL =0, with PbPb, subtraction
1500
1000 H

500 — -
910 60 80 100 120 140 160 180 200
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Jet clustering technology

Jet algorithms performance in pp at LHC

C/A anti-ky  SISCone  C/A-filt
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2. Too large-R —
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Jet clustering technology

Jet algorithms performance in pp at LHC

Not all jet definitions
equally good:

SISCone  C/A-filt
T T 1. Too small-R —
Hadronization

effects

PL

A8Lzbb

2. Too large-R —
Underlying Event
and Pile-Up

L bt I LN LN Same for High

05 10 15 05 10 15 05 1.0 15 05 10 15 05 1.0 15

R R R R R Luminosity LHC
Pile-Up
JetQuality: Interactive tool compare jet definitions (JHEP 0812:032,2008)

PL

Aol g b6

http://www.lpthe.jussieu.fr/ salam/jet-quality/
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Modeling medium effects

MODELING MEDIUM EFFECTS
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Modeling medium effects

Medium effects

Implementation of different medium models in practical MC tools — Basic tool
for both theorists and experimentalists!
Assess potential of different jet finding strategies in realistic environment — In

HIC, understanding and subtracting the UE is also a theorist’s task!!
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Modeling medium effects

Medium effects

Implementation of different medium models in practical MC tools — Basic tool
for both theorists and experimentalists!

Assess potential of different jet finding strategies in realistic environment — In
HIC, understanding and subtracting the UE is also a theorist’s task!!

Medium effects from ACSW (Armesto et al, JHEP 0802:048,2008): radiative
energy loss through modification of vacuum splitting functions.

tot __ pvac ~ 2mt dlmed
P (z) = P™(2) + AP(z,t), AP(z,t)~ a. dedt

Implemented in modified Pythia 6.4 to Q-PYTHIA: A fully exclusive MC for
jet quenching in HIC
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Jets in medium

JETS IN MEDIUM
(Preliminary results)
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Jets in medium

Medium tomography
Quantifying medium effects — Example: inclusive jet distribution
» Theoretical prediction

theo _ do.pp+med/dp_r
Ra™(Pr) = = gom Tdor

» Experimental measurement (no subtraction)

da_pp+mcd+Pbe/de
dO’pp/de

R (pr) =

» Experimental measurement (subtraction)

>d+PbPb+sut
do_pp+me<l+ bPb+su )/dPT
doPv Jdpr

R (pr) =

In real experimental measurements — Normalize to the average number of

binary collisions
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Jets in medium

Inclusive jet distribution

[ Hardest jet distribution |

2200 - P00, p, =100 Ge
PbPb at sqrt{s}=5.5 TeV (NSH)
2000 - CamIAaa(Tlll]t; aslgomhm‘eR:U.S
C ghL =0, wo PbPb
1800 " + ghL =0, wo PbPb
- - ghL =0, wo PbPb, subtraction
1600 m——— ghL = 20 GeV?, L=2 fm, wo PbPb
= _.-—I e ghl =20 GeV?, L=2 fm, w PbPb
1400F |_ ghL = 20 GeV?, L=2 fm, w PbPb, sub.
1200}
1000 [
- ]
800 I_
600} i—
400 _I—
200F r
0 40 60 80 100 120 140 160 180 200
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Jets in medium

Inclusive jet distribution

[ Hardest jet distribution |
2200

PP->0g, P =T00Ge
PbPb at sqrt{s}=5.5 TeV (NSH)
2000 - Cam/Aa(filt) algorithm, R=0.5
C ghL =0, wo PbPb
1800 « ghL =0, wo PbPb
ghL = 0, wo PbPb, subtraction
1600 gL = 20 GeV?, L=2 fm, wo PbPb
C s ghL = 20 GeV?, L=2 fm, w PbPb

1400 f _'_L _II_ ghl = 20 GeV?, L=2 fm, w PbPb, sub.
1200
1000F - i

-
800 =i L |
600 - i_ |_I
400F
200 - ‘_I_‘—L

0= 60 80 100 120 140 160 180 200
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Jets in medium

Inclusive jet distribution

[ Hardest jet distribution |
2200

PP—>0g P, =I00GE
PbPb at sqrt{s}=5.5 TeV (NSH)
2000 Cam/Aa(filt) algorithm, R=0.5

C ghL =0, wo PbPb
1800 ++ ghL =0, wo PbPb
ghL =0, wo PbPb, subtraction
1600 m——— ghL = 20 GeV?, L=2 fm, wo PbPb
E s ghl = 20 GeV?, L=2 fm, w PbPb

1400 f I\— jL ghL = 20 GeV?, L=2 fm, w PbPb, sub.
1200}

e — [ ] L
1000 [

C T?
o s | S

600 ; i i
400 ‘ [—l' Lt : i
T
200+ T s T
0: el AT S T 1 L e I \—\‘ﬁ‘——\‘—v—v— re
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Jets in medium

Inclusive jet distribution

[ Hardest jet distribution |
2200

PP—>0g P, =I00GE
PbPb at sqrt{s}=5.5 TeV (NSH)
2000 Cam/Aa(filt) algorithm, R=0.5

- ghL =0, wo PbPb
1800 ++ ghL =0, wo PbPb
ghL =0, wo PbPb, subtraction
1600F ———— ghL =20 GeV?, L=2 fm, wo PbPb
E s ghL = 20 GeVA, L=2 fm, w PbPb
ghL =20 GeV?, L=2 fm, w PbPb, sub.
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800
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Jets in medium

Inclusive jet distribution

1.8 \
1.6 ™
E PPU0 P, =T00Ge \
14 - PbPb at sqrt{s}=5.5 TeV (NSH)
“E ghL =20 GeV?, L=2fm
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Dijet azimuthal correlations

Medium effects soften away-side correlations

[ Dijet azimuthal correlations |

35 - PP ->gg
L p, =100 Cev
- PbPb at sqrt{s}=5.5 TeV, NSH
- Cam/Aa(filt), R=0.5
3 r ghL =0, no PbPb
- = ghL =0, with PbPb
L + ghL =0, with PbPb, subtraction
- - ghL =20 GeV, no PbPb
225 = ghL = 20 GeV, with PbPb
o° - ghL = 20 GeV, with PbPb, subtraction |
= r
k]
S LF I
s 2
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° L
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Dijet azimuthal correlations

Medium effects soften away-side correlations

[ Dijet azimuthal correlations |

3.5

PP > 09

p, =100 Cev

PbPb at sqrt{s}=5.5 TeV, NSH
Cam/Aa(filt), R=0.5

| s ghL =0, no PbPb

+ ghL =0, with PbPb

= ghL =0, with PbPb, subtraction
= ghL =20 GeV, no PbPb
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------ ahL = 20 GeV, with PbPb, subtraction |
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Dijet azimuthal correlations

Medium effects soften away-side correlations

[ Dijet azimuthal correlations |
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o PP > 09
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- - + ghL =0, with PbPb
L - = ghL =0, with PbPb, subtraction
- - s gL = 20 GeV, N0 PbPb [A——
L2 B momim ghl = 20 GeV, with PbPb
o° o [e====- ghL = 20 GeV, with PbPb, subtraction |
= r
T r I
S 2r 1
bﬁ I S S S SR SN TP +
3 7 2
T - i i i lesasssas
£ 151 ‘
cE = e
C 1
A e e
L J ;
- _! I I
- oo PO N
0.5 ¥ = PR
P ke T R R o i el Bl el i I 1 1 1 1 1
25 2.6 2.7 A 8 (rad] 2.9 3 3.1
(pdije‘

Juan Rojo

Medium tomography with jet clustering algorithms



Jets in me

Jet shape
Jet substructure ¢(r) useful discriminator of medium effects
Cluster jet constituents with Rsj (r = Rsj/Rjet < 1) and keep hardest subjet
with pS(< pI?). Rjer = 0.5, 0.15 < Ry < 0.5
With the anti-kt algorithm (reduced backreaction)

Jet shape
1
o.9F
A C
A
=
S os
7 -
o )
\ |
1 =
< o7
=
PbPb @ 5.5 TeV (NSH)
Anti-K | alg, R=0.5
0'6, th:(‘l no PbPh
...... ghL = 0, w PbPb, sub
= ghL = 20 GeV, no PbPh
...... ghL = 20 GeV, w PbPb, sub
033 04 05 06 0.7 08 0.9 1
r N
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Jets in medium

Jet shape - LL pQCD
If medium effects parametrized by (1 4 fiea) in the singular part of the
splitting functions (Borghini et al. 05) then

_ Qs 'QJ 3fmed 43 7Nf TR
Fmea(r fnea) = 1= Z-In [CA< g T 2In2 96>+ 48 }

for as = 0.2 and fined ~ 3 [Pvac(r) = Pmed(r, fmea = 0)]— Agreement with
&(r) results from MC simulations + subjets ( L = 2 fm, gL = 20 GeV?)
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Summary

» Modern jet clustering algorithms and background subtraction related
techniques are very promising tools to probe the new state of matter
created in Heavy lon collisions

Medium tomography with jet clustering algorithms



Jets in medium

Summary

» Modern jet clustering algorithms and background subtraction related
techniques are very promising tools to probe the new state of matter
created in Heavy lon collisions

» Full QCD jets can be disentangled from background (at least) down to 50
GeV, and medium effects in the ACSW model down to conservative
estimations for medium parameters at the LHC
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Summary

» Modern jet clustering algorithms and background subtraction related
techniques are very promising tools to probe the new state of matter
created in Heavy lon collisions

> Full QCD jets can be disentangled from background (at least) down to 50
GeV, and medium effects in the ACSW model down to conservative
estimations for medium parameters at the LHC

» The flexibility in jet algorithms allows the estimation of systematic
uncertainties associated to background subtraction
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Jets in medium

Summary

» Modern jet clustering algorithms and background subtraction related
techniques are very promising tools to probe the new state of matter
created in Heavy lon collisions

» Full QCD jets can be disentangled from background (at least) down to 50
GeV, and medium effects in the ACSW model down to conservative
estimations for medium parameters at the LHC

» The flexibility in jet algorithms allows the estimation of systematic
uncertainties associated to background subtraction

» The approach presented in this talk on jet finding technology can be
applied to study the effects of any model of medium effects and jet
quenching: various models implemented in MC codes:

Q-PYTHIA (Armesto et al., JEWEL (K. Zapp et al, arXiv:0804.3568, T.
Renk, arXiv:0806.0305, HYDJET, PYQUENCH , ...
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Jets in medium

Summary

» Modern jet clustering algorithms and background subtraction related
techniques are very promising tools to probe the new state of matter
created in Heavy lon collisions

» Full QCD jets can be disentangled from background (at least) down to 50
GeV, and medium effects in the ACSW model down to conservative
estimations for medium parameters at the LHC

» The flexibility in jet algorithms allows the estimation of systematic
uncertainties associated to background subtraction

» The approach presented in this talk on jet finding technology can be
applied to study the effects of any model of medium effects and jet
quenching: various models implemented in MC codes:

Q-PYTHIA (Armesto et al., JEWEL (K. Zapp et al, arXiv:0804.3568, T.
Renk, arXiv:0806.0305, HYDJET, PYQUENCH , ...

» Our goal: determine which observables are most sensitive to discriminate
between the various models of medium effects in realistic conditions
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EXTRA MATERIAL
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

2 AR?

dj = min(kg, ktj)?: dg = ki, AR,-? = Ay5 + Aoi
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2’
2. Find smallest of dj and dig

dij = min(kz, ki) dis = k2, AR; = Ay] + Mgy
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Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2’
2. Find smallest of dj and dis

dij = min(kz, ki) dis = k2, AR; = Ay] + Mgy

» If djj is smallest, recombine i and j (add result to particle list,
remove 1, j)
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Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2’
2. Find smallest of dj and dis

dij = min(kz, ki) dis = k2, AR; = Ay] + Mgy

» If djj is smallest, recombine i and j (add result to particle list,
remove 1, j)
> if dig is smallest call i a jet (remove it from list of particles)
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Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2’
2. Find smallest of dj and dis

dij = min(kz, ki) dis = k2, AR; = Ay] + Mgy

» If djj is smallest, recombine i and j (add result to particle list,
remove 1, j)
» if dig is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.
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Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2’
2. Find smallest of dj and dis

dij = min(kz, ki) dis = k2, AR; = Ay] + Mgy

» If djj is smallest, recombine i and j (add result to particle list,
remove 1, j)
» if dig is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2’
2. Find smallest of dj and dis

dij = min(kz, ki) dis = k2, AR; = Ay] + Mgy

» If djj is smallest, recombine i and j (add result to particle list,
remove 1, j)
» if dig is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.

Single parameter: R (like cone radius), whose natural value is O (1)

Juan Rojo INFN Milano

Medium tomography with jet clustering algorithms



Jets in me

Jet shape
Jet substructure ¢(r) useful discriminator of medium effects
Cluster jet constituents with Rsj (r = Rsj/Rjet < 1) and keep hardest subjet
with pS(< pI?). Rjer = 0.5, 0.15 < Ry < 0.5
With the anti-kt algorithm (reduced backreaction)

Jet shape
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Jets in me

Jet shape

Jet substructure ¢(r) useful discriminator of medium effects

Cluster jet constituents with Rsj (r = Rsj/Rjet < 1) and keep hardest subjet
with pS(< pI?). Rjer = 0.5, 0.15 < Ry < 0.5

With the kr algorithm (larger backreaction)
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Jets in me

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
k7 algorithm with R = 0.4
[ Hardest jet distribution |

PP > 00, p,,, =100 Gev
2500 B PbPb at sqrt{s}=5.5 TeV (NSH)

r K, algorithm

- s (AL = 0, N0 PbPb
2000 I hL =0, with PbPb

SR R T R R v ghL = 0, with PbPb, subtraction
1500 I_
1000 Jl ]

500 |_. |
910 60 80 100 140 160 180 200
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
k7 algorithm with R = 0.4
[ Hardest jet distribution |

PP > 00, p, =100 GeV

T min

2500 PbPb at sqrt{s}=5.5 TeV (NSH)

K, algorithm

s ghL =0, no PbPb

2000 u ahL = 0, with PbPb
I S SR NN A B L ghL = 0, with PbPb, subtraction
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
k7 algorithm with R = 0.4
[ Hardest jet distribution |

PP > 00, p, =100 GeV

T min

2500 PbPb at sqrt{s}=5.5 TeV (NSH)

K, algorithm

s ghL =0, no PbPb

ghL =0, with PbPb

2000
S R B T R R hL = 0, with PbPb, subtraction
1500 f
1000 f Lj_'
500 f
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
Cam/Aa(filt) algorithm with R = 0.4

[ Hardest jet distribution |

PP > 00, p, =100 GeV

T min

2500 PbPb at sqrt{s}=5.5 TeV (NSH)

Cam/Aa(il) algorithm
s (AL = 0, N0 PbPb

2000 u ahL = 0, with PbPb
C | _| ------ ghL =0, with PbPb, subtraction
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
Cam/Aa(filt) algorithm with R = 0.4

[ Hardest jet distribution |

PP >, P, =100 GeV
2500 L PbPb at sqrt{s}=5.5 TeV (NSH)
r Cam/Aa(filt) algorithm
L s (AL = 0, N0 PbPb
2000 I hL =0, with PbPb
C J—- ...... ghL = 0, with PbPb, subtraction
1500 i
1000 T 1 —|
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events
Cam/Aa(filt) algorithm with R = 0.4

[ Hardest jet distribution |

PP > 00, p, =100 GeV

T min

2500 PbPb at sqrt{s}=5.5 TeV (NSH)

Cam/Aa(il) algorithm
s (AL = 0, N0 PbPb

ghL =0, with PbPb

2000
...... ghL = 0, with PbPb, subtraction

1500 L |

1000 S
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;— ]
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in LHC PbPb events

kr and Cam/Aa(filt) algorithms with R = 0.4
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» Filtering decreases sizably the shift in p’T due to UE due a reduction in
the jet area (from 6p¥E ~ 70 with kt to §p¥= ~ 30 with Cam/Aa(filt) )

» Filtering reduces the UE contamination, similarly imposing a cut in pr
but with a IRC safe and unbiased method
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Jets in me

Jet reconstruction

Compare reconstruction efficiency for pp jets (pjﬁt = 100 GeV) and PbPb jets
with UE(NSH) subtracted (Npis iv < 3%), k: alg, R=0.4

P reconstruction Rapidity reconstruction
o1af E— P Moo F - P T
[ PbPh @ 5.5 TeV, Ns| 0121 POPD @ 5.5 TeV, Ns|
0.12 ktalgorithm F e algorithm
F x-‘ — gaussian fit 6=0.08 oal [ — gaussian it 0=0.02
01f i L 76
: \ §
0.08- r % %\
E \ 0.06]
006 I\ E A B\
004 % \{\ 0.041~ /
002 A 002~ Ve
C lﬁ :____:; gy |
%015 01 005 01 015 02 -0.05 -0.04 -0.03 -0.02 -0.01 001 002 003 004 005
ey

-0 0.05
(PP3)p;

Note effects of Back-reaction (~ 3% correction)

reco,

Extract o,

figure of merit of jet reconstruction
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Jets in medium

Jet areas for Background subtraction

b)

» Subtraction brings pEZ.“ much closer to the original p,; value

dpiz dpiz mho  as(puR)

) - aPQ,  dP® c R
<AP£.(3;.LR),> 2/ dpeaprz { R = Biagp- il o (PR :
pt
Not all jet algorithms behave identically with subtraction ...
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Jets in medium

Jet areas for Background subtraction

(sub)

> Subtraction brings p,;

much closer to the original p,; value

» Subtraction improves sizably the jet resolution (event-by-event correction)

¢ dPJ(E?R B dPJ(‘i?R _B ‘glu a,(pR?)
dpiz dpiz anp mhy  as(puR)

. P
<Ap£.(3A,LR),> 2/ dpiapa { .
Pt

Not all jet algorithms behave identically with subtraction ...
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Jets in medium

Jet areas for Background subtraction

(sub)

> Subtraction brings p,;

much closer to the original p,; value
» Subtraction improves sizably the jet resolution (event-by-event correction)

> No cut in the pr of particles required (reduce potential biases)

¢ dPJ(E?R B dPJ(‘i?R _B ‘glu o, (pR?)
dpiz dpiz anp mhy  as(puR)

» P
<Ap£.(3A,LR),> 2/ dpiapez { .
Pt

Not all jet algorithms behave identically with subtraction ...
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Jets in medium

Jet areas for Background subtraction

(sub)

Subtraction brings p,;

much closer to the original p,; value
Subtraction improves sizably the jet resolution (event-by-event correction)

No cut in the pr of particles required (reduce potential biases)

vVvyVvVvyy

Subtraction is not meant to be perfect: various (in general small,
computable) effects complicate picture: fluctuations of the background
o, (observable)

Apy=Ap+ovVA—1L, (L)=0 (as -Apln ii)
Ap

back-reaction to MB particles

(@) L )
AP dPJ(A?R —Bianp (S as(pR?)
dprz dpiz T wby as(paR)

P
<Ap£(i;§?)> 2/ dpiapez { .
Pim

Not all jet algorithms behave identically with subtraction ...
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Filtering

Sequential recombination jet algorithms suffer from sizable UE corrections
From original kt paper S. Catani et al., Nucl.Phys.B406:187-224,1993.

In the case of hadron collisions the jet definition has to fulfil the requirements
of being

(i) simple to use in experimental analyses, v

(i) simple to use in theoretical calculations, v©

(iif) infrared and collinear safe, \/"

(iv) subject to small hadronization corrections, \/~

(v) able to factorize initial-state collinear singularities into universal distribu-
tions, \/

(vi) not strongly affected by contamination from hadron remnants and the
underlying soft event. >
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Filtering

Sequential recombination jet algorithms suffer from sizable UE corrections
From original kt paper S. Catani et al., Nucl.Phys.B406:187-224,1993.

In the case of hadron collisions the jet definition has to fulfil the requirements
of being

(i) simple to use in experimental analyses, v

(i) simple to use in theoretical calculations, v©

(iif) infrared and collinear safe, \/"

(iv) subject to small hadronization corrections, \/~

(v) able to factorize initial-state collinear singularities into universal distribu-
tions, v/~

(vi) not strongly affected by contamination from hadron remnants and the
underlying soft event. >

Improve performance with automatic post-processing: Filtering
1. Cluster all the particles in the event with a given jet definition (JA1,R1).

(See J. Butterworth et al., (arXiv:0802.2470 [hep-ph]))
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Filtering

Sequential recombination jet algorithms suffer from sizable UE corrections
From original kt paper S. Catani et al., Nucl.Phys.B406:187-224,1993.

In the case of hadron collisions the jet definition has to fulfil the requirements
of being

(i) simple to use in experimental analyses, v

(i) simple to use in theoretical calculations, v©

(iif) infrared and collinear safe, \/"

(iv) subject to small hadronization corrections, \/~

(v) able to factorize initial-state collinear singularities into universal distribu-
tions, v/~

(vi) not strongly affected by contamination from hadron remnants and the
underlying soft event. >

Improve performance with automatic post-processing: Filtering
1. Cluster all the particles in the event with a given jet definition (JAi,R1).

2. Take each of the jets of event and cluster its constituents with another
jet definition (JA2,R2) with R, < R1 —Set of subjets of original jet.

(See J. Butterworth et al., (arXiv:0802.2470 [hep-ph]))
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Filtering

Sequential recombination jet algorithms suffer from sizable UE corrections
From original kt paper S. Catani et al., Nucl.Phys.B406:187-224,1993.

In the case of hadron collisions the jet definition has to fulfil the requirements
of being

(i) simple to use in experimental analyses, v

(i) simple to use in theoretical calculations, v©

(iif) infrared and collinear safe, \/"

(iv) subject to small hadronization corrections, \/~

(v) able to factorize initial-state collinear singularities into universal distribu-
tions, v/~

(vi) not strongly affected by contamination from hadron remnants and the
underlying soft event. >

Improve performance with automatic post-processing: Filtering

1. Cluster all the particles in the event with a given jet definition (JAi,R1).

2. Take each of the jets of event and cluster its constituents with another
jet definition (JA2,R2) with R, < R1 —Set of subjets of original jet.

3. Keep the ng; subjets of a jet with largest pr and throw way the
remaining subjets.

(See J. Butterworth et al., (arXiv:0802.2470 [hep-ph]))
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Jets in medium

Filtering

Sequential recombination jet algorithms suffer from sizable UE corrections
From original kt paper S. Catani et al., Nucl.Phys.B406:187-224,1993.
In the case of hadron collisions the jet definition has to fulfil the requirements
of being
(i) simple to use in experimental analyses, v
(i) simple to use in theoretical calculations, v©
(iif) infrared and collinear safe, \/"
(iv) subject to small hadronization corrections, \/~
(v) able to factorize initial-state collinear singularities into universal distribu-
tions, \/
(vi) not strongly affected by contamination from hadron remnants and the
underlying soft event. >

Improve performance with automatic post-processing: Filtering

1. Cluster all the particles in the event with a given jet definition (JAi,R1).

2. Take each of the jets of event and cluster its constituents with another
jet definition (JA2,R2) with R, < R1 —Set of subjets of original jet.

3. Keep the ng; subjets of a jet with largest pr and throw way the
remaining subjets.

4. Original jets are replaced merging the selected subjets
(See J. Butterworth et al., (arXiv:0802.2470 [hep-ph]))
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Jet shape

Raa (6(r)) = dpp+med+PbPbtsub(r)/dpp(r)

.F
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H p,S100Gev | b et /
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Jets in medium

UE Background simulation

Simulation of the soft background expected in HIC at the LHC — embed pp
event into a min-bias PbPb event @ 5.5 ATeV (central collisions b < 3 fm)
simulated with PSM from N. S. Amelin, et al., Eur. Phys. J. C 22 (2001) 149.
PSM is a two-component MC model for HIC:
1. Soft collisions leading to strings (DPM: valence strings o< Npart + sea
strings o< Ngon) which might interact forming color ropes

2. Semi-hard collisions generated through Pythia (+ GRV94 + EKS98)

Options (Nparticles) <% n:0> <%§;‘ n:0>
PbPb with semi-hard events (SH) | 4.7 -10° 5350 3020
PbPb wo semi-hard events (NSH) | 2.7 - 107 2230 1230

Azimuthal asymmetry generated trough an induced elliptic flow with v» = 0.05
for pr < 4 GeV particles
Effect of different MC models for HIC background — work in progress
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in PbPb events

kT algorithm with R = 0.4 with R =04 with
R=04 with R = 0.4 with
R=04 with R =0.4

[ Hardest jet distribution |

PP-> g9, P, =100 GeV

2500 PbPb at sqrt{s}=5.5 TeV (NSH)
K. algorithm

——— ghL =0, n0 PbPb
qhL =0, with PbPb
------ qhL =0, with PbPb, subtraction

2000

1500
1000 I_ I_—I
500 E l_||_
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in PbPb events

with R = 0.4 kr algorithm with R = 0.4 with
R=04 with R = 0.4 with
R=04 with R =0.4

[ Hardest jet distribution |

PP-> g9, p, =100 GeV

2500 PbPb at sqrt{s}=5.5 TeV (NSH)
K. algorithm

——— ghL =0, n0 PbPb
qhL =0, with PbPb
------ qhL =0, with PbPb, subtraction

2000

1500
1000 I_ I_—I

- L
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in PbPb events

with R =04 with R = 0.4 kr algorithm with
R=04 with R = 0.4 with
R=04 with R =0.4

[ Hardest jet distribution |

PP-> g9, p, =100 GeV

2500 PbPb at sqrt{s}=5.5 TeV (NSH)
K. algorithm

——— ghL =0, n0 PbPb
qhL =0, with PbPb
------ qhL =0, with PbPb, subtraction

2000

-] i
1000 3. |_ L—I
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in PbPb events

with R = 0.4 with R =0.4 with
R = 0.4 Cam/Aa(filt) algorithm with R = 0.4 with
R=0.4 with R = 0.4

[ Hardest jet distribution |

PP-> g9, P, =100 GeV

2500 PbPb at sqrt{s}=5.5 TeV (NSH)
Cam/Aa(ilt) algorithm

——— ghL =0, n0 PbPb
ahL = 0, with PbPb

J——| ...... ghL = 0, with PbPb, subtraction
1500 +
1000 | |

2000
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in PbPb events

with R = 0.4 with R =0.4 with
R=04 with R = 0.4 Cam/Aa(filt) algorithm with
R=0.4 with R =0.4

[ Hardest jet distribution |

PP >0, P, =100 GeV

2500 PbPb at sqrt{s}=5.5 TeV (NSH)
Cam/Aa(ilt) algorithm

——— ghL =0, n0 PbPb
ahL = 0, with PbPb

J—- ...... ghL = 0, with PbPb, subtraction
1500
L
1000 T I—I —|
J B “‘\—LL

500 I

2000
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Jets in medium

Background subtraction in practice

Inclusive jet distribution in pp dijet events embedded in PbPb events
with R =0.4
R=0.4 with R = 0.4
R = 0.4 Cam/Aa(filt) algorithm with R = 0.4

with R = 0.4

[ Hardest jet distribution |

2500
2000 -
1500

PP >09. P, =100 GeV
PbPb at sqrt{s}=5.5 TeV (NSH)
Cam/Aa(ilt) algorithm

ghL =0, no PbPb

ahL =0, with PbPb

qhL = 0, with PbPb, subtraction

1000 I_I
500 o . [_
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Jets in medium

Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis
Key observation — For UE jets, pJTCt ~ Ajet

= man[ (5]

and subtract it from the hard jets using its area A;

sub
5™ = P — Auj p £ 0o /A (3)
Circular range of D = 3R centered on jet axis (reduce sensitivity to UE

structure)

@®:
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Jets in medium

Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis
Key observation — For UE jets, pJTCt ~ Ajet

= man[ (5]

and subtract it from the hard jets using its area A;

sub
5™ = puj = Auj p £ 0o /A; (3)
Circular range of D = 3R centered on jet axis (reduce sensitivity to UE
structure)
P
Jet2
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Jets in medium

Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis
Key observation — For UE jets, pJTCt ~ Ajet

= man[ (5]

and subtract it from the hard jets using its area A;

sub
5™ = P — Auj p £ 0o /A (3)
Circular range of D = 3R centered on jet axis (reduce sensitivity to UE
structure)
P
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Jets in medium

Background subtraction

Data-driven method to estimate the background density per unit area p (from
the Underlying Event) on an event-by-event basis
Key observation — For UE jets, pJTCt ~ Ajet

= man[ (5]

and subtract it from the hard jets using its area A;
sub
5™ = puj = Auj p £ 0o /A; (3)
Circular range of D = 3R centered on jet axis (reduce sensitivity to UE
structure)

» Subtraction improves sizably the jet resolution

» Subtraction brings pl(fjub) close to the original p,; value

> However, subtraction is not meant to be perfect: various (small,
computable) effects complicate picture: fluctuations of the background
o, (observable), back-reaction

=Biarp —-

why  as(pnR)

() (L)
dPjir  dPinr i\, aslpR?)
dpz dpra

»u
(AG—L)y
(Ap{Gai ~ / dpape {
i
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Jets in medium

Medium effects

Medium effects from ACSW Armesto et al, JHEP 0802:048,2008: radiative
energy loss through modification of vacuum splitting functions.
<qi,med>

A

27t dimed
P (z) = P*° AP(z,t), AP(z,t)~

(2) (z) + AP(z,t) , (z,1) o dedi
Implemented in modified Pythia 6.4 — Q-PYTHIA

Samples generated for pp — gg for medium length L = 2 fm and transport
coefficient 2 GeV? < §L < 20 GeV?

g=

dl s CR e} (x)_ _ik, -u _1 fioo dé n(€) o (u)
= 2 n 1
Y dw dk. (27)2w? Re/ody/ /y,dy//du e e 2y
u=r(y) 7
9.0 Drexp {i dgf <'-'2—M)} .
8y Ou y=0=r(y;) v 2 i w
dl divae Jjmed

_ P
Yiodks  Ydwdk. T¥awak, 0 M@ =3a@r w=(1-2)E
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Jets in medium

Medium effects
Medium effects from ACSW Armesto et al, JHEP 0802:048,2008: radiative

energy loss through modification of vacuum splitting functions.
2,med
P! (2) = P"(z) + AP(z,t), AP(zt) g L)
) =rrz)+ Ak 1), A2 B Y
Nuclear suppression Raa(p'") = (damed/dpjﬁt) / (da"‘"‘c/dpjﬁt) for R = 0.4:

2wt dime?

0.9F 5P > A bvens
0.8F Gevz
E ahalL - 8 Gev2
E ahait - 15 Gevz
0.7 ghatl = 20 Gev2
E hal = 40 Gev2
F T
E \\ -\\___
03F e
0.2F
01F
= L L L L L L L L
% 55 60 65 7 75 80 85 90
P
'
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Jets in medium

Medium effects

Medium effects from ACSW Armesto et al, JHEP 0802:048,2008: radiative
energy loss through modification of vacuum splitting functions.

2,med
med q !
Ptot(z) — PvaC(Z) + AP(Z, t) , AP(Z, t) ~ @ dl ~ __ < L >

as dzdt ° 1T A

Note that our jet finding technology can be applied to study the effects of any
model of medium effects and jet quenching:

Our program:

1. Study jet finding in HIC for a generic medium effects model (this talk)

2. Determine which observables are more suited to discriminate between
models of jet quenching

3. Useful tools: Implementation of different models in practical Monte Carlo
showering programs
JEWEL, K. Zapp et al, arXiv:0804.3568, see also U. Wiedemann's talk
T. Renk, arXiv:0806.0305
L. Cunqueiro talk
others: HYDJET, PYQUENCH , ...
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Jets in medium

A typical dijet event

pp — gg events with pjﬁt ~ 100 GeV and R = 0.4 - No PbPb
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Jets in mediu

A typical dijet event

~ 100 GeV and R = 0.4 - PbPb model NSH

jet
T

pp — gg events with
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A typical dijet event

~ 100 GeV and R = 0.4 - PbPb model SH

jet
T

pp — gg events with
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Jets in me

Speed

Modern jet finding tools allow fast implementations to cope with large LHC
multiplicities N ~ 800 — 4000 for pp, N ~ 40000 for HIC

In FastJet, seq. reco. algs. like k7, the time it takes to cluster N particles
scales as as N In N (not N°3!)

<~ CDF midpoint (=0 GeV) |~ .*
| - x - CDF midpoint (s=1GeV) | .~
— % - PxCone !
—a— SISCone W
—a— k, (fastjet) E

0.1

run time (s)

0.001
1 1000
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Jets in medium

Inclusive jet distribution
Raa(pr) for the hardest jet distribution with the kr algorithm at R = 0.5

L § PPy P, =100 Ge
15 _* K PbPb at sqrt{s}=5.5 TeV (NSH)
: 3 ghL =20 GeV?, L =2fm

E K; alg., R=0.5
- B — (pp + med)/pp

3 v (pp + PbPb + med)/(pp + PbPb)
e (pp+ PBPb + med)/pp
...... (pp+ PbPb + med + sub)/pp

T

jet
=)
T

Raa(P
-

900 110 120 130 140 ot 150 160 170 180 190
p

T
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Jets in me

The Anti-kt algorithm

The Anti-kr algorithm (M. Cacciari et al., arXiv:0802.1189) has a very reduced
sensitivity to Back-Reaction:

~5GeV ApPR ~ 1GeV

kr Anti—kr

Ap?"

for pi* ~ 100 GeV, R = 0.5, p ~ 150 GeV.

17 e
0.9 e
L //

@ = <pl)p>
o
\m

o
3

>
e
PP ->09
T P, =100 Gev
PbPb @ 5.5 TeV (NSH)
K, alg, R=0.5

ghL =0, no PbPb
ghL =0, w PbPb, sub

ghL = 20 GeV, no PbPb

-- ghL = 20 GeV, w PbPb, sub

083 04 05 06 _ 07 08 0.9 1
r

st

0.6
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Jets in me

The Anti-kt algorithm

The Anti-kr algorithm (M. Cacciari et al., arXiv:0802.1189) has a very reduced
sensitivity to Back-Reaction:

ApPR|  ~5GeV ApPR ~ 1GeV
kT Anti—kr
for pi* ~ 100 GeV, R = 0.5, p ~ 150 GeV.
1

o
©

4
©

@ = <pl)p>

o
3

PbPb @ 5.5 TeV (NSH)
Anti-K alg, R=0.5

ghL =0, no PbPb

ghL =0, w PbPb, sub

ghL = 20 GeV, no PbPb

-- ghL = 20 GeV, w PbPb, sub

0.8 0.9 1

0_3.3‘ - ‘0.4‘ - ‘0.5‘ L ‘0_6‘ - .
r

st
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Jets in medium

Photon-jet correlations

Photons offer an unbiased calibration of jet energy

[ Photon-jet correlations |

0.2
pp->gy
C P, =100 Gev
0.18f g 20 ey
= —— ghL=0,no PbPb ]
I R ghL = 0, with PbPb
0.16¢ —— ghL =0, with PbPb + sub
C ——— ghL = 20 GeV2, no PbPh
Q.14 e ghL = 20 GeV2, with PbPb
- ——— ghL =20 GeV2, with PbPb + sub
0.12 I L
0.1 :
T N e H
0.08[
C —Tr---
0.06[ ]
0.04 frzss@esfdiion
E= S —
T ]
0.02 AR
m Ll L1 L1

( 15_‘0:1 photo;())/ jet
p; -pP P

T
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Jets in medium

Subjet distribution

Distribution of subjets with a hard jet (the IRC safe observable related to the
hump-backed plateau)

[ Inclusive subjet distribution |

01
0.09
0.08
0.07

000

Z0.05

Zo04
0.03
0.02
0.01

0

Juan Rojo

PP -> 99
P mm:lDO GeV

PbPb @ 5.5 TeV, NSH
ktalg., R=05, R =0.1

ghL =0, no PbPb

ghL = 20 GeV?, L=2 fm, no PbPb

]
—

—

=

| L L L N LA LA s e

o

. 2
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&=-Loglp,/p;

jet

2.5
]
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Jets in medium

Subjet distribution

Distribution of subjets with a hard jet (the IRC safe observable related to the
hump-backed plateau)

[ Inclusive subjet distribution |

0.25
H pp ->gg
H pT‘mm:wO GeV
I PbPb @ 5.5 TeV, NSH
021 ktalg., R=0.5, R =0.1
H qhL =0, no PbPb
] ghL = 20 GeV?, L=2 fm, no PbPb
Fo.15 s .
=z L |
< ol = .
- &
S 04f
0.05[: ;:F L
ol N SN AR SR STV SRRl urar S
0 1 2 3 4. et 5 6 7 8
&=-Loglp;/p ]
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Jets in medium

Quenching weights

The approach of AQSZ reproduces the quenching weights

D(x, t) = A()D(x, to)—|—A(t)/t i} tl)/dz p(Xu). @
P(z) = P(2) + AP(z), A(t) = A™(t)A™(¢), (5)

med
po = exp{ /dw/ddelko (6)
ple) = poZH/dw,/ko_, dil,-:;,- 5 <e— ' “;) (7)
D(x, £) ~ py D" (x, £) + / %p(e) pvee (1 i t> , 8)
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Jets in medium

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy
collisions.

quark jet
quark quark jet? + gluon jet? hadron

(NLO) (LO) jet(s?)
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Jets in medium

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy

collisions.
Electrons and muons are fundamental, weakly coupled particles — it makes

sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

quark jet
quark quark jet? + gluon jet? hadron
(LO) (NLO) (LO) jet(s?)
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Jets in medium

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy

collisions.
Electrons and muons are fundamental, weakly coupled particles — it makes

sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

quark jet
quark quark jet? + gluon jet? hadron
(NLO) (LO) jet(s?)

» Partons split into further partons
» Jets are a a way of thinking of the ‘original parton’
> A ‘jet’ is a fundamentally ambiguous concept (e.g. requires a resolution)
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Jets in medium

Jets

Naively: a jet is a bunch of collimated hadrons ubiquitous in high energy

collisions.
Electrons and muons are fundamental, weakly coupled particles — it makes

sense physically and experimentally to think of them as concrete objects.
Partons (quarks, gluons) are not so simple...

quark jet
quark quark jet? + gluon jet? hadron
(LO) jet(s?)

(LO) (NLO)

» Partons split into further partons
» Jets are a a way of thinking of the ‘original parton’
> A ‘jet’ is a fundamentally ambiguous concept (e.g. requires a resolution)

Jets are only meaningful once you've defined a jet algorithm.,
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:
1. Calculate (or update) distances between all particles i and j, and between

i and beam:
AR}
R2

dij = min(k, ki) dis = k2, AR; = Ay + Agj
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2
2. Find smallest of dj and dig

dij = min(k&, ki) dis = k3, AR; = Ay] + Agy
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2
2. Find smallest of dj and dig

dij = min(k&, ki) dis = k2, AR; = Ay] + Agy

» If dj; is smallest, recombine i and j (add result to particle list,
remove i, j)
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2
2. Find smallest of dj and dig

dij = min(k&, ki) dis = k3, AR; = Ay] + Agy

> If dj; is smallest, recombine i and j (add result to particle list,
remove i, f)
» if dig is smallest call i a jet (remove it from list of particles)
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2
2. Find smallest of dj and dig

dij = min(k&, ki) dis = k3, AR; = Ay] + Agy

> If dj; is smallest, recombine i and j (add result to particle list,
remove i, f)
» if dig is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2
2. Find smallest of dj and dig

dij = min(k&, ki) dis = k3, AR; = Ay] + Agy

> If dj; is smallest, recombine i and j (add result to particle list,
remove i, f)
» if dig is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.
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Jets in medium

Sequential recombination algorithms

Example: the k; algorithm:

1. Calculate (or update) distances between all particles i and j, and between
i and beam:

AR}
R2
2. Find smallest of dj and dig

dij = min(k&, ki) dis = k3, AR; = Ay] + Agy

> If dj; is smallest, recombine i and j (add result to particle list,
remove i, f)
» if dig is smallest call i a jet (remove it from list of particles)

3. If any particles are left, repeat from step 1.

One parameter: R (like cone radius), whose natural value is 1
k: algorithm attempts approximate inversion of the QCD shower branching
process — Theoretical sound basis.
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Jets in medium

k; algorithm in action (R = 1)

_ kt algorithm I
500
© 400
% -
S 300 B
~ 200
100
O 1 1 | 1 1 1 | 1 1 1 I 1 1
-1 0 1

rapidity
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k; algorithm in action (R = 1)

d; = 500 GeV 2 |

© 400
% |
g 300 -
~ 200

100
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rapidity
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Jets in medium

k; algorithm in action (R = 1)
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k; algorithm in action (R = 1)

d; = 1600 GeV 2 |

© 400
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g 300 -
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Jets in medium

k; algorithm in action (R = 1)

w
o
o
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k; algorithm in action (R = 1)

d 137000 GeV 2 |

© 400 i
> - jet
g 300 -
— 200

100 —

rapidity
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Jets in medium

k; algorithm in action (R = 1)
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Jets in medium

k; algorithm in action (R = 1)

jet  dg325000 GeV 2 |

© 400
% |
g 300 -
~ 200

100

rapidity
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Jets in medium

Jet Folklore

Jet discussions: polarised, often driven by unquantified statements

kt adapts to the

. the cone gives
jet structure

nice conical jets

the cone is too
rigid

kt's a vacuum
cleaner

cone has big
hadronisation
corrections

| can't correct
for pileup

Several more include: Infrared safety does not matter from a practical point of
view, k1 is worse at hadron colliders than cone, kt too slow ...
Instead let's turn this discussion quantitative!
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Jets in medium

Infrared safety

For JetClu (similar to Atlas cone), half of events fails IRC safety tests.
Even for the MidPoint cone algorithm, 15% of events fail the test!

JetClu 50.1%
SearchCone 48.2%
MidPoint 16.4%
Midpoint-3 15.6%
PxCone 9.3%

Seedless [SM-p;] 1.6%
0.17% Seedless [SM-MIP]

<10°  Seedless (SISCone)
L | L Lol L Ll L Lol L L

107 10 102 10! 1

10°

Fraction of hard events failing IR safety test

Juan Rojo INFN Milano

Medium t graphy with jet clustering algorithms



The area of a jet

The area of a jet is only meaningful for IRC algorithms.

Active area — Cover the (7, ¢) plane with ghosts (very soft particles) and
cluster the event — Number of ghosts proportional to jet area (Cacciari, Salam
and Soyez 08).

0.5 1 1.5 2 250 0.5 1 1.5 2 25
6.0 T T T T T T T .0
(@ h' Pythia 6.4 O — Kk

K] 501 ‘ P, mx‘:] Tev] [ — Aachen/Cam. 150 s
S a0} ‘ 2hardestjets 1 - T SiScone (f=0.75) 144 3
S H yl<2, R=1 ——— Cam, 1-parton active =
Zz 30f ]’4‘ B I {30 z
& 20 i parton level | | parton level |5 N;
= s passive area 3 active area &
~ 10} \ 1r lio &

0.0 - - — 0.0

< 3°F @ hadron level{ (@ hadron level 130 _
3 passive area /\ active area 3
Z -4
D20 / °
Z Z
:\E NE
E 1.0 5
0.0
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Jets in me

The area of a jet

The area of a jet is only meaningful for IRC algorithms.

Active area — Cover the (7, ¢) plane with ghosts (very soft particles) and
cluster the event — Number of ghosts proportional to jet area (Cacciari, Salam
and Soyez 08).

Jet area differs greatly from naive wR? even for cone algorithms.

0.5 1 1.5 2 250 0.5 1 1.5 2 25
6.0 T T T T T T T .0
(a) h' Pythia 6.4 © — Kk

K] 501 ‘ P, mx‘:] Tev] [ ——— Aachen/Cam. 150 s
2 4ol ‘\ st [ = SiScone (==075) 1,0 3
S lyl<2, R=1 ——— Cam, 1-parton active S
Zz 30f ]’4‘ 1t {30 z
% 20 I parton level 1 | parton level 15 o
5 s passive area e active area =
T 10f \ 1 r 11.0 —

0.0 - - — 0.0

T T T T T T T T

o 30F © hadron level{ (@ hadron level 130 _
e} passive area /\ active area ks
4
Saof | 3
£ £
‘@ 1ok «
£ B

0.0
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Background subtraction

Jet areas provide a technique to subtract Underlying Event and specially the
Pile-up. (important at high-Lumi LHC) (Cacciari and Salam 07).

0.03 | Cam/Aachen, R=0.7 no UE, no PU | 0.03 | Cam/Aachen, R=0.7 no UE, no PU |

T i UE,noPU —--- o UE, no PU (sub) ——
3 - UE,PU ---- 3 UE, PU (sub) ——
[©) ! g [0 ’

c 002 R 1 o 0.02

3 ' 3

3 - 3

2 001 E 2 oo

Tevatron, (Npy)=2.3 nTIne = Tevatron, (npy) =2.3
150 160 170 180 190 200 150 160 170 180 190 200
reconstructed top mass [GeV] reconstructed top mass [GeV]
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Background subtraction

Jet areas provide a technique to subtract Underlying Event and specially the
Pile-up. (important at high-Lumi LHC) (Cacciari and Salam 07).

Determine the noise density per unit area p = median [pjﬁt/Ajet] and subtract:

sub __ A
Pjet = Pjet — AjetP

0.03 | Cam/Aachen, R=0.7 no UE, no PU | 0.03 | Cam/Aachen, R=0.7 no UE, no PU |

T i UE,noPU —--- o UE, no PU (sub) ——
3 - UE,PU ---- 3 UE, PU (sub) ——
[©) ! g [0 ’

c 002 R 1 o 0.02

3 ' 3

3 - B

2 001 E 2 oo

Tevatron, (Npy)=2.3 nTIne = Tevatron, (npy) =2.3
150 160 170 180 190 200 150 160 170 180 190 200
reconstructed top mass [GeV] reconstructed top mass [GeV]

Juan Rojo

Medium tomography with jet clustering algorithms



Jets in medium

QCD flowchart

"

Jets (theory tool) §
g.

MC + Tree ’

Jet X-sct

DETECTOR

Jet (definitions) provide central link between expt., “theory”-and theory
Juan Rojo INFN Milano
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Jets in me

Infrared safety

Cone algorithms have been known to suffer from Infrared and Collinear
unsafety for many years.
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Jets in medium

Infrared safety

Cone algorithms have been known to suffer from Infrared and Collinear

unsafety for many years.
For the CDF MidPoint cone algorithm:

‘ Observable 1st miss cones at | Last meaningful order ‘
Inclusive jet cross section NNLO NLO
W/Z/H + 1 jet cross section NNLO NLO
3 jet cross section NLO LO
W/Z/H + 2 jet cross section NLO LO
jet masses in 3 jets, W/Z/H + 2 jets LO none

Table 2: Summary of the order (a? or alapy) at which stable cones are missed in various
processes with a midpoint algorithm, and the corresponding last order that can be mean-
ingfully calculated. Infrared unsafety first becomes visible one order beyond that at which
one misses stable cones.
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Jets in medium

Infrared safety

Cone algorithms have been known to suffer from Infrared and Collinear
unsafety for many years.
For the CDF MidPoint cone algorithm:

‘ Observable 1st miss cones at | Last meaningful order ‘
Inclusive jet cross section NNLO NLO
W/Z/H + 1 jet cross section NNLO NLO
3 jet cross section NLO LO
W/Z/H + 2 jet cross section NLO LO
jet masses in 3 jets, W/Z/H + 2 jets LO none

Table 2: Summary of the order (a? or alapy) at which stable cones are missed in various
processes with a midpoint algorithm, and the corresponding last order that can be mean-
ingfully calculated. Infrared unsafety first becomes visible one order beyond that at which
one misses stable cones.

Theory investment in NLO computations: ~ 50 people x 10 years ~ 30 — 50

million $ — Lost if IRC unsafe jet algorithms used!
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Jets in medium

Analytical understanding of jets

The pr of a jet gets modified by perturbative corrections, hadronisation and
underlying event (Dasgupta, Magnea and Salam 07)
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Jets in medium

Analytical understanding of jets

The pr of a jet gets modified by perturbative corrections, hadronisation and
underlying event (Dasgupta, Magnea and Salam 07)

P> = asleprinR/m+ O(R)
5P = —2CrA(w)/R+O(R)
pY® = AueR’/2+ 0O (R4) Aue ~ /5
9 T
gl Tevatron |
.y quark jets
Jo) 7t - 4
:DE ol /(6p()ﬁ py =50 GeV
% |
3 af
=t (3P3ert (oPY5E

o ! N . :
04 05 06 07 08 09 1 1.1
R
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Jets in me

Analytical understanding of jets

The pr of a jet gets modified by perturbative corrections, hadronisation and
underlying event (Dasgupta, Magnea and Salam 07)

ert
spy = asleprinR/m+ O(R)
hadr
Spr = —2CFA(u)/R+O(R)
UE 2 4 w
opr = NAueR /2+(9(R) Aue ~ /s
9 T T T T T T
gl Tevatron |
‘\‘; quark jets _
Jo) as _ H -
[0} C (2 p; =50 GeV
w /(OpOh ! ]
a2 6 ]
g
< 5¢ 4 i
T
S L ]l o
£ 5 —
+ 3F il o
(\g 2l ] 0.6 1 // Tevatron, gluon jets ———
o3 e Tevatron, quark jets - - - -
= 2 2 05F." ; E
1F (OPypent (OPYUE 1 LHC, gluon jets ——
LHC, quark jets ———-
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Jets in medium

UE Background simulation

Simulation of the soft background expected in HIC at the LHC —
embed pp event into a min-bias PbPb event @ 5.5 ATeV (central
collisions b < 3 fm) simulated with PSM from N. S. Amelin, et al.,
Eur. Phys. J. C 22 (2001) 149.

PSM is a two-component MC model for HIC:

1. Soft collisions leading to strings (DPM: valence strings
X Npart + sea strings o Neoi) which might interact forming
color ropes

2. Semi-hard collisions generated through Pythia (+ GRV94 +
EKS98)
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Jets in medium

UE Background simulation

Two options (different multiplicity and y and pr spectra) studied for the UE
MC background:

> Only soft collisions, no semi-hard collisions (NSH): easy scenario

» With semi-hard collisions (SH): conservative scenario

dN,.
Process <Nparcicles> % N dih B P(n,6)=(0,0) T [s]
1 1m—0 e
op — gg 160 30 15 0.5 GeV 2.10-%
pp — gg(+PbPb/SH) 4.7 - 10% 5350 3020 450 GeV 1.2
pp — gg(+PbPb/NSH) 2.7-10% 2230 1230 150 GeV 0.2

Clustering timings with the kr algorithm with a Intel(R)Xeon 2.66 Ghz
Jet clustering timings scales as Npart In Npare
All particles of the event included in clustering, no pr cut
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Inclusive jet distribution

| P [GeV] | JetAlg | MC back | Mis-ID jets | o5 [GeV] |

100 kr NSH 3% 11

SH 7% 18

Cam/Aa(filt) NSH 1% 8

SH 3% 14

50 kr NSH 8% 9

SH 18% 15

Cam/Aa(filt) | NSH 3% 7

SH 12% 13

» The 0,5 of the subtracted jets is not very sensitive to absolute pjﬁt scale

> In the good(bad) background scenario, NSH(SH), p** = 50 GeV jets can
be reconstructed without cuts in pr of input particles with relative
uncertainty (052" /p" ~ 0.15(0.26))

> Medium effects [in this particular model] (L = 2 fm, §L = 20 GeV?) can

be discriminated down to pjﬁt ~ 50 GeV jets
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Jets in medium

Inclusive jet distribution

2000

1800

—— anL=20GeV L=
“t+ hL=20Gev?, L= fm,w POPb, sub

» The 0,5 of the subtracted jets is not very sensitive to absolute pjﬁt scale

» In the good(bad) background scenario, NSH(SH), = 50 GeV jets can
be reconstructed without cuts in pr of input partlcles with relative
uncertainty (052" /p" ~ 0.15(0.26))

> Medium effects [in this particular model] (L = 2 fm, §L = 20 GeV?) can
be discriminated down to pi™* ~ 50 GeV jets
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