Startup planning for the LHC and operation scenario for forward physics

by Helmut Burkhardt / CERN for the LHC commissioning team

- LHC status, 1st experience with beams and status following the incident *
- Forward experiments at the LHC and requirements for the machine
- Commissioning steps and expected beam parameters
- High-beta TOTEM and ALFA optics

Acknowledgements :
Simon White, Massimo Giovannozzi ; optics matching and aperture
Steve Myers ; material on LHC status; * more details in his presentation on Thu 2 nd July
Massimiliano Ferro-Luzzi ; LHC parameters and physics program

Experience with beam : first beam induced quench

Time
Local mini-quench "quenchino"
verification of quench limit in magnets $\sim 2 \times 10^{9}$ protons @ 450 GeV and calibration of BLM system

10 September 2008

First turn. 10 September 2008

- First \& Second Turn on screen
- First Turn on BPM system

```
Jörg Wenninger
Courtesy of Roger Bailey & O. Brüning
```


Textbook example : from first attempt to RF capture

Simulation of injection with $\mathbf{1 7 0}^{\circ}$ injection phase offset

Simulation of injection with 170° injection phase offset

projection of previous plot : longitudinal charge density distribution

LHC beam 2 with well adjusted RF capture

After 3 days of excellent progress with beams

Commissioning with beam interrupted by a series of hardware failures - not related to beams

- two large transformers; 13-18 September
- 19 September at 11:18:36, incident during hardware commissioning of sector 3-4 towards $5.5 \mathrm{GeV} / 9.3 \mathrm{kA}$, at 8.7 kA or $\sim 5.2 \mathrm{TeV}, \quad$ of the 340 MJ stored energy about 180 MJ or $2 / 3$ went to the dump resistors; $\quad 1 \mathrm{MJ}$ melts 2.4 kg Cu

bad splice at electrical connection between dipole and quad Q23, 6 t He or $1 / 2$ of arc lost; pressure built up in adjacent each 107 m long, vacuum subsectors causing significant collateral damage
some typical numbers and back of envelope estimates:
good splice $\sim 0.3 \mathrm{n} \Omega, \mathrm{I}=13 \mathrm{kA}, \mathrm{U}=\mathrm{RI}=4 \mu \mathrm{~V}$ (now) possible to check - done for dipoles in $1 / 2$ of LHC $\mathrm{P}=\mathrm{R}^{2}=0.05 \mathrm{~W}$ quench would need locally $>10 \mathrm{~W}$ - depending on position - less critical in magnet QPS triggered at 0.1 V (asym) $>10 \mathrm{~ms} ; \sim 30-50 \mathrm{~ms}$ for quench heater
LHC dipole $\mathrm{L}=100 \mathrm{mH} \quad$ stored energy in single dipole $\mathrm{I}^{2} \mathrm{~L} / 2=8.45 \mathrm{MJ} \times 1232=10.4 \mathrm{GJ}$

Current status - June 2009

damage repair

- 39 dipoles and 14 quadrupoles removed - and re-installed. Last magnet back in tunnel on 30/04/2009, electrical connections finished 2nd June

avoid re-occurance

- Improved diagnostics, measurements of magnet interconnects - splice resistance;

Measurements at 80 K revealed a potential splice-problem in sector 4-5, which has just been warmed up

- > 50 \% of machine (sectors, 1-2, 3-4, 5-6, 6-7, all standalone magnets) with fast pressure release valves
- improved anchoring on vaccuum barriers
- enhanced Quench Protection System
aperture symmetric quenches and joints in magnets

- Remaining risks minimized by keeping maximum beam energy limited to $\mathbf{4 - 5} \mathbf{~ T e V}$ for the first run

Major amount of work - much of the hardware work is finished, \sim within schedule as reviewed in Chamonix in Feb.'09 (few weeks delay)

[^0]
Forward experiments at the LHC

close collaboration - machine / experiment on beam aspects and requirements

- TOTEM, $\boldsymbol{\beta}^{*} \sim \mathbf{1 5 0 0} \mathbf{m}$; In first LHC run request for operation at $\mathbf{9 0} \mathbf{m}$. K. Eggert, M. Deile, V. Avati, H. Niewiadomski. Roman pots installed and ready for parasitic data taking in normal running at safe positions agreed with the collimation team
- ALFA , ATLAS Forward Detectors for Measurement of Elastic Scattering and Luminosity, $\boldsymbol{\beta}^{*}=$ 2450 m, TDR Jan 2008; P. Grafstrom, P. Puzo, S. Cavalier, M. Heller, H. Stenzel
- LHCf, installed in the TAN at IP1, verification of cosmic ray physics at $10^{17} \mathrm{eV} ; \mathrm{L}<10^{30}$ $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$; D. Macina, A.-L. Perrot
- FP420, plans for very forward proton tagging. both ATLAS and CMS, F. Roncarolo
+ as part of ATLAS, CMS : ZDC, zero degree calorimeters, in the TAN

Schematic layout, right of IR5, with TAN position and TOTEM roman pots

The roman pots are movable detectors.
In the LHC - all movable devices which can move into the beam are controlled from the CCC

TAN - absorber for neutral particles

FP420 : 420 m from the IP, beginning of the arc in the dispersion suppressor

Maximum beam intensity LHC year 1

the design LHC luminosity : 3.23×10^{14} protons / beam limited by magnet quench / collimation maximum beam loss rate $\sim 10^{-3} / \mathrm{s}$ fraction or $\sim \mathbf{4 \times 1 0 ^ { 1 1 }} \mathrm{p} / \mathrm{s}$

Examples for 0.001/s Loss Rate

- It is really the loss rate that matters above a few ms. So what counts is the ratio of loss amount over loss duration (short loss spikes are very dangerous). We get the peak loss rate $0.001 / \mathrm{s}$ from:
-1% of beam lost in 10 s.
- 0.1% of beam lost in 1 s .
- 0.01% of beam lost in 100 ms .
- 0.001% of beam lost in 10 ms .
* Stick with the official loss rate $0.001 / \mathrm{s}$ from now on, adding some evolution.
- Assume $0.002 /$ s is achieved in the first year of LHC operation at 5 TeV , as shown in following slides.

Result: Intensity Limit vs Loss Rate 5 TeV

\# bunches : nominal is 2808 bunches, 25 ns spacing

LHC year 1: Important to go in small steps - minimize beam losses. Max. total intensity $\sim \mathbf{1} / \mathbf{1 0}$ nominal. start of physics run : $\mathrm{I}<2 \times 10^{13} \mathrm{p}$ with intermediate coll. settings
later $: \mathrm{I}<5 \times 10^{13} \mathrm{p}$ with tight coll. settings.

Physics run modes

* expt magnet ON means at full nominal field (as for 14 TeV)

Beam parameters, LHC year 1

Steps for luminosity increase during the 2009-2010 LHC $p p$ run										
	$\begin{gathered} 900 \\ \mathrm{GeV} \end{gathered}$	first highenergy coll.	Pilot physics run							
			no external crossing angle			with external crossing angle				
step	1	23	4	5	6	7	8	9	...	units
fill scheme	2x2	$=\quad=$	43×43	156x156	156×156	$50 \mathrm{~ns} @ 144$	50ns@288	50 ns 9432		
E	0.45	$5=$	$=$	$=$		$=$	$=$		-	TeV
k_{6}	2	$=\quad=$	43	156	$=$	$144+12$	$288+12$	$432+12$.	bunches
N	5	$=\quad=$	$=$	=	9	=	$=$	=	-	$10^{10} \mathrm{p} / \mathrm{bunch}$
$N_{\text {Alice }}$	5	$=\quad=$	=	=	$=$	1	=	=	...	$10^{10} \mathrm{p} / \mathrm{bunch}$
β^{*} (IP1,5)	11	$=2$	=	=	1	3	=	=	-	m
β^{*} (IP2)	10	$=\quad=$	$=$	=	=	3	$=$	=	...	m
β^{*} (IP8)	10	2	$=$	=	3	4	$=$	=	...	m
$I / I_{\text {nom }}$	0.031	$=\quad=$	0.67	2.42	4.3	4.05	8.1	12.1	-	\%
$E_{\text {stored }}$	0.0072	$0.08=$	1.72	6.24	11.1	10.5	20.8	31.2	.	M.J
$\alpha_{\text {net }}$ (IP1,5)	0	$0=$	=	=	=	300	$=$	$=$...	$\mu \mathrm{rad}$
$\alpha_{\text {net }}$ (IP2)	0	$200=$	=	=	=	300	$=$	$=$	-	$\mu \mathrm{rad}$
$\alpha_{\text {net }}$ (IP8)	0	380	=	=	=	620	$=$	=	...	$\mu \mathrm{rad}$
n_{μ} (IP1,5)	1	$=\quad=$	43	156	156	144	288	432	**.	colliding pairs
n_{b} (IP2)	1	$=\quad=$	4	=	$=$	12	$=$	=	...	colliding pairs
n_{L} (IP8)	1	$=\quad=$	19	72	=	138	276	414	...	colliding pairs
L (IP1,5)	0.0026	$0.029 \quad 0.16$	6.9	24.9	161.5	48.3	96.5	145	...	$10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
L (IP2)	0.0029	$0.032=$	0.13	$=$	$=$	0.05	=	$=$...	$10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
L (IP8)	0.0029	$0.032 \quad 0.15$	2.8	10.8	23.7	32.7	65.4	98.1	...	$10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
μ (IP1,5)	0.012		=	=	6.9	2.24	$=$	=	-	
μ (IP2)	0.013	$0.21=$	$=$	$=$	$=$	0.028	=	=	-	
μ (IP8)	0.013	$0.21 \quad 1.0$	=	$\square=$	2.3	1.58	$=$	=	...	
Time for physics	\sim shifts	\sim days	\sim weeks		\sim months					
$\begin{array}{ll} \hline \hline \text { Definitions: } & \mu=\text { average number of inelastic interactions per crossing } \\ & n_{b}=\text { number of colliding pairs at given IP } \\ & \alpha_{\text {net }}=\text { net crossing angle } \end{array}$										
Assumptions:	ngitudin elastic er	l emittance ϵ ss section: σ_{i}	$\begin{aligned} & =0.5 \mathrm{nl} \\ & \mathrm{el}=52 \end{aligned}$.7 TeV and 75 mb	for $\sqrt{s}=$	$.9 \text { and } 10$				
Estimates: * with machine	am com am com tal expect ailable	issioning time issioning time ed physics	- for re * to go ning ti	ching step from step e: of the	$\begin{aligned} & 6 \approx \operatorname{six} w \\ & \text { to step } 7 \\ & \text { order of } 5 \end{aligned}$	eks \approx two week $10^{6} \mathrm{~s}$				

LHC year 1: likely to run for month's in steps 5-6
No crossing angle. $\mathrm{E}_{\mathrm{b}}=5 \mathrm{TeV} ; \mathrm{k}_{\mathrm{b}}=156 \times 156, \mathrm{~N}_{\mathrm{p}}=5 \times 10^{10}-\mathbf{9} \times 10^{10}$

Run in some fills with $\boldsymbol{\beta}^{*}=\mathbf{9 0} \mathrm{m}$ in IR5, peak luminosity :

$$
\begin{array}{llll}
\mathbf{N}_{\mathrm{p}}=5 \times 10^{10} & \mathrm{~L}=5.5 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} & \sigma_{\mathrm{x}, \mathrm{y}}=252 \mu \mathrm{~m} & \text { divergence } \boldsymbol{\sigma}^{\prime} \times, y=2.8 \mu \mathrm{rad} \\
\mathbf{N}_{\mathrm{p}}=9 \times 10^{10} & \mathrm{~L}=1.8 \times 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} &
\end{array}
$$

Or also : un-squeeze to 90 m at the end of some fills

Later years

$\mathrm{E}_{\mathrm{b}}=7 \mathrm{TeV}$. Dedicated high $\beta^{*}>1500 \mathrm{~m}$ runs. No crossing angle, maximum $\mathrm{k}_{\mathrm{b}}=156 \times 156$ Requires reduced emittance $\varepsilon_{N}=1 \mu \mathrm{~m}$ - which will be difficult and may require scraping maximum bunch intensity $\sim 3 \times 10^{10}$
TOTEM $\beta^{*}=1535 \mathrm{~m} ; ~ \mathrm{~N}_{\mathrm{p}}=3 \times 10^{10} ; ~ \mathrm{~L}=6 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} ; \sigma_{\mathrm{x}, \mathrm{y}}=454 \mu \mathrm{~m} \quad \sigma_{\mathrm{x}, \mathrm{y}}=0.30 \mu \mathrm{rad}$
ATLAS $\beta^{*}=2625 \mathrm{~m} ; ~ N_{p}=3 \times 10^{10} ; ~ L=4 \times 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} ; ~ \sigma_{\mathrm{x}, \mathrm{y}}=593 \mu \mathrm{~m} \quad \boldsymbol{\sigma}^{\prime}{ }_{\mathrm{x}, \mathrm{y}}=0.23 \mu \mathrm{rad}$

Luminosity scans and absolute luminosity

(pioneered by Van der Meer @ ISR)

$$
\frac{\mathcal{L}}{\mathcal{L}_{0}}=\exp \left[-\left(\frac{\delta x}{2 \sigma_{x}}\right)^{2}-\left(\frac{\delta y}{2 \sigma_{y}}\right)^{2}\right]
$$

$$
\mathcal{L}=\frac{N_{1} N_{2} f}{4 \pi \sigma_{x} \sigma_{y}}
$$

Accuracy: better than $\mathbf{1 \%}$ at ISR
Aim for early LHC ~10 \% (done @ RHIC)
Contributions :

- Intensity $\mathrm{N}_{1,2} \quad \mathrm{BCT} \sim 1 \%$
- Length scale - from BPM, bumps optics, few \%
- Particles in tails
- Exact shape

studied by Simon White - as PhD thesis.

LEP example, V-plane, 3 bunches

principle : H.B. and Per Grafstrom; LHC Report 1019 from 23 May 2007 http://cdsweb.cern.ch/record/1056691 and H.B., R. Schmidt, Intensity and Luminosity after Beam Scraping, CERN-AB-2004-032

Low $\boldsymbol{\beta}$ insertion ; LHC

the β-function in a field free region
has a form of a parabola with

$$
\beta(s)=\beta^{*}+\frac{\left(s-s_{0}\right)^{2}}{\beta^{*}}
$$

the beam size of a beam of emittance ε

$$
\sigma=\sqrt{\beta \varepsilon}
$$

and the angular beam size divergence

$$
\sigma^{\prime}=\sqrt{\frac{\varepsilon}{\beta}}
$$

the beam size increases about linearly from the IP to the first quadrupole, by a factor s / β^{*} (for $\mathrm{s} \gg \beta^{*}$)
\rightarrow aperture limit for low β^{*}; upgrade plans for larger aperture triplet;
High β^{*} beam size instead flat - potential conflict for reduced pipe at IP

For illustration, using simplified expressions σ, σ^{\prime} for negligible dispersion and σ^{\prime} for $\beta^{\prime}=0$; normally the case at the IP

for the nominal emittance

$$
\begin{aligned}
\varepsilon_{\mathrm{N}} & =3.75 \mu \mathrm{~m}, \quad \varepsilon_{\mathrm{N}}=\varepsilon \beta \gamma \\
\varepsilon & =0.503 \mathrm{~nm} \text { at } 7 \mathrm{TeV}
\end{aligned}
$$

$\boldsymbol{\beta}$-function, phase advance and tune

relation between phase advance $\varphi(\mathrm{s})$,

$$
\beta(\mathrm{s}) \text { and tune } \mathrm{Q}(\mathrm{~s})=\varphi(\mathrm{s}) / 2 \pi
$$

$$
\Phi(s)=\int \frac{1}{\beta(s)} d s
$$

integrated symmetrically around the minimum

$$
Q=\frac{1}{2 \pi} \int_{s_{0}-l}^{s_{0}+l} \frac{1}{\beta(s)} d s=\frac{1}{\pi} \arctan \left(\frac{l}{\beta^{*}}\right)
$$

contributes 0.5 in tune (π in phase) for low $\beta^{*} \ll l$ going to 0 for high $\beta^{*} \gg l$
for the LHC with $l=26.15 \mathrm{~m}$ from IP to centre of Q1

normal injection, ramp ; standard beam, compatible with low $\boldsymbol{\beta}$ physics in other points

$$
\text { IP5 to RP } 220 \Delta \mu_{x}=\pi \quad \Delta \mu_{y}=\pi / 2
$$

2007 version
 $$
\Delta \mathrm{Qx}=0.10 \quad \Delta \mathrm{Qy}=0.03
$$

/afs/cern.ch/eng/lhc/optics/V6.501/HiBeta/IP5_beta90.str

90 m optics, 2009 version

$$
0.5<\text { beam 1/beam } 2 \text { strength }<2 \text {. }
$$

$$
\Delta \mathrm{Qx}=0.20 \quad \Delta \mathrm{Qy}=0.045
$$

/afs/cern.ch/eng/lhc/optics/V6.503/HiBeta/IP5_beta90.str

Recent reference : Study of High Beta Optics Solution for TOTEM, H. Burkhardt, S. M.White, Y. Lenvinsen, WE6PFP016, PAC'09

Aperture for the 90 m optics, 2009 version, 5 and 7 TeV

n1 : effective aperture including alignment and tolerances ; required $\mathbf{>} \mathbf{7} \boldsymbol{\sigma}$

5 TeV , separated beams

$\begin{array}{ll}\text { MQML.6L5.B1 } & \mathrm{n} 1=14.1 \\ \text { MQML.5L5.B1 } & \mathrm{n} 1=15.3 \\ \text { MQY.4L5.B1 } & \mathrm{n} 1=20.1 \\ \text { IP5 } & \mathrm{n} 1=23.8 \\ \text { MQY.4R5.B1 } & \mathrm{n} 1=24.8 \\ \text { MQML.5R5.B1 } & \mathrm{n} 1=14.3 \\ \text { MQML.6R5.B1 } & \mathrm{n} 1=14.3\end{array}$

7 TeV , separated beams

V6.503
standard emittance $\varepsilon_{\mathrm{N}}=3.75 \mu \mathrm{~m}$
reachable from standard injection \& ramp
by un-squeeze

TOTEM optics, high $\boldsymbol{\beta}^{*}$

special runs - with reduced emittance and intensity

IP5 to RP $220 \Delta \mu_{\mathrm{x}}=\Delta \mu_{\mathrm{y}}=\pi / 2$

Baseline Totem 1535 m , as inherited from A.V. in 2005 with some issues: $\mathrm{Q} 4=0$, strengths exceeding limits

$$
\Delta \mathrm{Qx}=-0.06 \quad \Delta \mathrm{Qy}=0.56
$$

PAC'09 V6.503 Q4on alternative, $\beta^{*}=1500 \mathrm{~m}$ potentially reachable by un-squeeze $\Delta \mathrm{Qx}=0.43 \quad \Delta \mathrm{Qy}=0.33 \quad\left(\mathrm{PAC}^{\prime} 09\right)$ can be further optimized

Aperture n1, high β^{*} Totem, 7 TeV, separated beams

Tightest at IP. Still within spec of $\mathbf{n 1}=7$ with separation, $\varepsilon_{\mathrm{N}}=1 \boldsymbol{\mu m}$

Aperture n1, high $\boldsymbol{\beta}^{*}$ Totem, 7 TeV , in collision

ATLAS high $\boldsymbol{\beta}^{*}$ optics

$\beta^{*}=2625 \mathrm{~m}$
roman pot at 240 m from IP1
$\Delta \mu_{y}=\pi / 2$
$\varepsilon_{\mathrm{N}}=1 \mu \mathrm{~m}$

Q4 polarity inverted

Reference : Overall Optics Solution for very high-beta in ATLAS; S. White, H. Burkhardt, P. Puzo, S. Cavalier, M. Heller ; Proc. EPAC 2008 and LHC-PROJECT-Report-1135
top - energy, no crossing angle
procedure similar to commissioning of the squeeze to reduce $\boldsymbol{\beta}$ (to $\mathbf{3 m}$, later 1m)
here in addition need for tune compensation of $\Delta \mathrm{Qx}=0.20, \Delta \mathrm{Qy}=0.045$
using IR4 and or arcs, check and if necessary correct $\boldsymbol{\beta}$-beat

- 1st time single beam, minimum intensity, check and correct separation bump closure
- repeat with two beams; measure and correct, collide

Also consider - un-squeeze end of fill :

- mode to adjust, collimators to coarse setting, re-separate
- un-squeeze to end of $\operatorname{ramp} \beta^{*}=11 \mathrm{~m}$
- un-squeeze to $\boldsymbol{\beta}^{*}=\mathbf{9 0} \mathbf{m}$

Not relevant for the 1st year of LHC operation
Somewhat pre-mature to look at the details now - will depend on experience with squeeze and un-squeeze in the 1st year.

Optics wise - two main cases :

1. optics with Q4 on normal polarity; potential to reach about $\beta^{*}=1500 \mathrm{~m}$ for TOTEM
2. optics with Q4 inverted. Required for ATLAS $\boldsymbol{\beta}^{*}=\mathbf{2 6 2 5} \mathbf{~ m}$ and as option for TOTEM requires commissioning of injection and ramp at $\beta^{*} \approx 180 \mathrm{~m}$; with an aperture of $n 1 \approx$ 7 for separated beams at $\varepsilon_{\mathbf{N}}=1 \mu \mathrm{~m}$

In both cases: Needs preparation of very low $\varepsilon_{\mathrm{N}}=1 \mu \mathrm{~m}$ emittance beams :

- work in injectors, may require scraping in SPS
- minimize any emittance-blow up in the LHC; kickers, mismatch, feedbacks ...
- better understand and simulate physics limitations - intrabeam scattering
- may require scraping in the LHC

Request for very precise optics measurements. ALFA:

- $\boldsymbol{\beta}^{*}$ known to $\pm \mathbf{1} \%$
- $\Delta \mu$ at RPs to $\pm 2 \%$
- beam divergence $\sim 0.23 \boldsymbol{\mu r a d}$ known to $\mathbf{1 0 \%}$
- crossing angle $0 \pm 0.2 \mu \mathrm{rad}$

Concluding remarks

- The LHC is a large and very complex machine and will require long, careful commissioning with a gradual increase in intensity and luminosity
- The LHC has a very broad physics potential which includes forward physics ; the requirements in intensity and luminosity are generally modest and could potentially fit well in the earlier running
- The very high- β optics and reduced emittance will be challenging ; will be good to review this after initial experience with LHC operation and the commissioning of the $90 \mathbf{m}$ optics.
for further follow up
with extra time and resources, would be good to do more work on (help welcome)
- experimental conditions / background studies for forward physics, integrated in LBS
simulations side : full tracking, etc
experimental side : background signals for forward detectors, signal exchange
- combined efforts on vertex and alignment : optics, survey group, vertex information from LHC experiments
- compatibility of forward physics and LHC upgrade

Backup Slides

Critical Issues

Past

- QRL cryo line (He supply)
- DFB power connections, warm to cold transition
- Triplet quadrupoles - differential pressure

Recent

- Vacuum leaks, condensation - humidity sector 3-4
- Magnet powering check / correct : min/max, cabling - polarity
- PIM plug in module with bellow
- Magnet re-training few magnets quenched well below what was reached in SM18

Beam sizes, squeeze $11 \mathrm{~m} \geqslant 0.55 \mathrm{~m}$

More detailed MAD-X aperture input for IR5

MAD-X 4.00.25
using the recent files provided my Massimo /afs/cern.ch/user/g/giovanno/w1/aperture/V6.503/
Jun 10 16:31 aperture.b1.madx Jun 10 16:32 aperture.b2.madx Jun 10 16:33 aper_tol.b2.madx Jun 10 16:33 aper_tol.b1.madx Jun 8 16:38 exp_pipe_install.madx Jun 10 15:38 CMS_exp_pipe_model.madx

Previously the aperture started at the TAS MBAS2.1R1, TAS.1R1, BPMSW.1R1.B1,

IP5,
MBCS2.1R5, TAS.1R5, BPMSW.1R5.B1,

IP1, APERTYPE=RECTELLIPSE, APERTURE=\{ 9.999999, APERTYPE=RECTELLIPSE, APERTURE=\{ 9.999999, APERTYPE=RECTELLIPSE, APERTURE=\{ 0.017000 , APERTYPE=RECTELLIPSE, APERTURE=\{ 0.030000 ,

APERTYPE=RECTELLIPSE, APERTURE=\{ 9.999999, APERTYPE=RECTELLIPSE, APERTURE=\{ 9.999999, APERTYPE=RECTELLIPSE, APERTURE=\{ 0.017000 , APERTYPE=RECTELLIPSE, APERTURE=\{ 0.030000 ,

now used with CT2tol := 0.005;
CMSpipe1 : marker, APERTYPE=CIRCLE, APERTURE=\{0.02900\}, APER_TOL $=\{0.015,0.0,0.0\} ;!\mathrm{s}=0.000000$
CMSpipe2.15 : marker, APERTYPE=CIRCLE, APERTURE=\{0.02900\}, APER_TOL = \{0.015, 0.0, 0.0\}; ! s = 0.321667
CMSpipe7.15 : marker, APERTYPE=CIRCLE, APERTURE=\{0.02900\}, APER_TOL = \{0.015, 0.0, 0.0\}; ! s = 1.930000
CMSpipe8.15 : marker, APERTYPE=CIRCLE, APERTURE $=\{0.03341\}, \operatorname{APER} _T O L=\{0.015,0.0,0.0\} ;!\mathrm{s}=2.251667$
CMSpipe9.15 : marker, APERTYPE=CIRCLE, APERTURE=\{0.03811\}, APER_TOL $=\{0.015,0.0,0.0\} ;!\mathrm{s}=2.573333$
CMSpipe10.15: marker, APERTYPE=CIRCLE, APERTURE=\{0.04281\}, APER_TOL = \{0.015, 0.0, 0.0\}; ! s = 2.895000
CMSpipe11.15: marker, APERTYPE=CIRCLE, APERTURE=\{0.04938\}, APER_TOL = \{0.015, 0.0, 0.0\}; ! s = 3.216667
.....

Aperture n1, 90 m, 2009 version, 5 and 7 TeV

5 TeV , in collision

7 TeV , in collision

MQML. $6 L 5$. B1	$\mathrm{n} 1=14.13$
MQML.5L5.B1	$\mathrm{n} 1=15.28$
MQY.4L5.B1	$\mathrm{n} 1=22.02$
IP5	$\mathrm{n} 1=26.91$
MQY.4R5.B1	$\mathrm{n} 1=26.33$
MQML.5R5.B1	$\mathrm{n} 1=14.74$
MQML.6R5.B1	$\mathrm{n} 1=14.51$

V6.503
standard emittance $\varepsilon_{\mathrm{N}}=3.75 \mu \mathrm{~m}$
reachable from standard injection \& ramp
by un-squeeze

[^0]: More later this week : R. Heuer and S. Myers, presentation to CERN personnel, 2nd of July.

