

WP5

Mass Storage Management

J Jensen j.jensen@rl.ac.uk

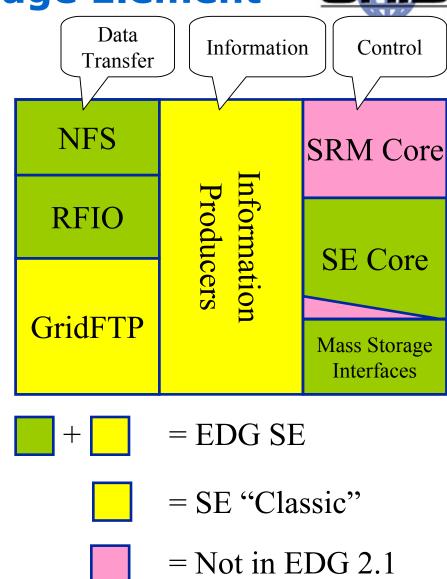
Outline

- Objectives
- Achievements
- ◆Lessons learned
- Future & Exploitation
- ◆Summary

Objectives

- Develop uniform interfaces to mass storage
 - Independent of underlying storage system
- Integrate with EDG Replica Management services
 - "Normally" users access SE via RM
- Develop back-end support for mass storage systems
 - Provide "missing" features, e.g. directory support
 - Provide Grid access control
- Publish information

Objectives – uniform interface



- Control interface
 - Original objective was "develop uniform interface to mass storage"
 - Must work with proxies ("Single sign-on")
 - Interface changed to be a web service for compatibility with other WPs halfway through the project
 - SRM version 1 was adopted as an alternative API for compatibility with other projects and LCG
- Data Transfer interface
 - Globus GridFTP required
 - Must support both encrypted and unencrypted transfers
- ◆Information interface
 - Publish to MDS later, to R-GMA

Achievements – Storage Element

GRID

- EDG Storage Element meets these objectives
- Flexible architecture
 - Cope with changing requirements
 - Pluggable features such as access control
 - Easy to extend
- Security
 - Secure interfaces
 - File level access control (not in EDG 2.1 though)
- Currently supports CASTOR, HPSS, ADS, as well as disk

Achievements – Storage Element

- SE's performance is acceptable
 - Performance dominated by data transfer times
 - E.g. 0.7 second per file for small files via GridFTP
 - Performance dominated by mass storage access
 - 10 minutes to stage in file from ADS
 - 30 minutes to stage in file from CASTOR
 - Basic core performance 0.3 seconds per command

Scalability

- Scalability an issue, particularly for EO with many small files
- Release 2.1: 10000 files ok, 10000000 files not
- Limits reached in underlying file system
- Being addressed in new metadata implementation

Achievements – SE deployment

EDG SEs as of 17 Feb 2004

Note Taiwan!

Data from R-GMA (WP3) and mapcenter (WP7)

Many sites have more than one SE – a few sites have only Classic SE

London alone has three sites: IC, UCL, QMUL

Achievements – site specific

CASTOR SRM

- Provided an SRM interface to CASTOR at CERN
- Interoperability demonstrated with FermiLab
- SRMCopy implemented

CASTOR GridFTP

- Provided a GridFTP interface to CASTOR's cache
- Based on the Globus wu-ftpd GridFTP server
- Files must be staged in before access
- Transfer rates up to 30 MB/s (with specially tuned TCP settings)

◆SARA

Porting SE to Irix, developing cache management tools

Achievements – collaborations

- Contributions to international standards and fora
 - SRM
 - Collaboration between Fermilab, Jefferson Lab, Lawrence Berkeley, RAL, CERN
 - Contributed to the design of the SRM version 2 protocol
 - GLUE
 - Contributed to the design of GLUE storage schema
 - GGF
 - Tracked developments in appropriate working groups
 - SRM not currently part of GGF
 - Dissemination
 - Talks at conferences and in working groups, publications,...

◆ EDG

Participated in ITeam, ATF, SCG, QAG,...

Achievements beyond release 2.1

- Access Control Lists (ACL)
 - Based on GACL
 - Fine-grained: Access based on user, file, and operation
 - Files can share ACLs
 - Work required to make more usable and user-friendly
- Improvements to metadata system
 - Toward a more scalable system
 - Two phases: first replace current metadata plugins ("handlers")
 - Second: hook up to metadata database
 - First phase nearly complete, second phase expected concluded by April

Lessons learned

- Choice of architecture was definitely right
 - Architecture has successfully coped with changing requirements
- Look for opportunities for component reuse
 - Used web services deployment and security components provided by WP2
 - Deployed and developed further information producers supplied by WP3
 - Almost all parts of the Data Transfer components developed externally
- Prototype implementations live longer than expected
 - SE's metadata system was implemented as prototype
 - Scalability issues discovered on application testbed

Lessons learned

- Inter-WP integration requires a lot of effort!
 - At times, nearly 100% of WP5 devoted to ITeam work and site installation support
 - Storage interface machines are heterogeneous
 - More installation support was required
 - For example, effort required to support DICOM servers was significantly underestimated
 - Requires significant effort from WPs 2, 3, 5, 10 plus of course SCG,
 ATF, and, eventually, ITeam
- Need to agree standard protocols
 - Standards must be open and well-defined

Exploitation

- Used yesterday in middleware demo to access mass storage
- Used successfully on EDG testbeds by all EDG applications
 WPs
- "Atlas Data Challenge 1.5"
 - SE is currently used by Atlas to transfer data between ADS at RAL and CASTOR at CERN
 - About 1500 files; 2 TB in total
 - Files are copied by EDG RM and registered in an RC at RAL
 - This work is being done by Atlas outside the EDG testbeds
- The SE provides the Grid interface to ADS at RAL
 - This is important because ADS is being used by a large variety of scientific applications groups

Future and exploitation

- Storage Element SRM
 - SE will provide generic SRM 1 interface
 - This work is almost finished
 - Learning from the experience with CASTOR SRM
 - Work will be carried on by RAL; later in GridPP 2
 - Will investigate whether to build SRM version 2
 - Depends on uptake of protocol in international community
 - Current SRM implementation is built with also SRM 2 in mind
 - Some additional features required
- Storage Element further mass storage systems
 - Scope for implementing support for AMS, DICOM?
 - Support for UK Tier-2 sites to be developed by GridPP2

Future and exploitation

- Storage Element and VOMS
 - Integrate VOMS support into SE SE already works with VOMS proxies
 - Will enable more scalable access control
 - Fairly easy task accomplished again by reusing components
 - May need to VOMS-enable GridFTP server integrate LCAS and LCMAPS
- Integration with GFAL
 - LCG's "Grid File Access Library" POSIX style interface
 - Planned integration using SRM 1 interface
- Automatic Grid mirroring
 - Edinburgh and Glasgow looking into using SE for automatic mirroring of data

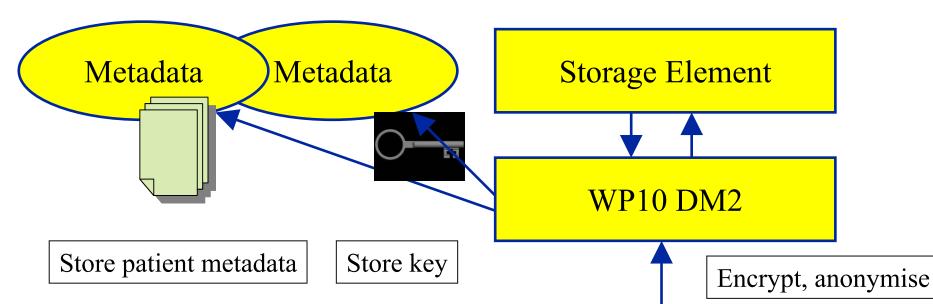
Summary

- ◆ EDG Storage Element
 - Meets the requirements; in some cases exceeds them
 - Provides a uniform Grid interface to mass storage
 - Interfaces with EDG Replica Management system
 - Dual solution lightweight "SE classic" and full-featured SE
 - SRM 1 to CASTOR, other systems being prepared
 - Commitment to resolve open issues


Applications

- SE being used by middleware WPs
- Applications in follow-on and external projects
 - E.g. UK e-Science programme projects
 - For example, SE is Grid interface to ADS

GFAL, SRM, and Storage Element


- ◆ LCG decided to use GFAL the "Grid File Access Library"
- It was decided to interface to EDG SE using SRM 1 interface
- SRM 1 can also be used for interoperability with DoE Labs
- We are integrating the EDG SRM layer with the EDG SE
- Some complications → not in2.1
- We are committed to completing the task

DICOM server support

Access control on metadata required; different ACLs for different types of metadata

DICOM Server