Etude des performances du calorimètre électromagnétique d'Atlas

Plan

- A quoi sert un calorimètre électromagnétique ?
- Principe de fonctionnement
- Le calorimètre électromagnétique d'Atlas
- Analyse des performances
 - Corrections à apporter
 - Résolution en énergie
 - Uniformité
- Conclusions

Atlas et le LHC

Le LHC

- Acronyme de Large Hadron Collider
- Caractéristiques :
 - Collisionneur p-p
 - Energie au centre de masse : 14 TeV
 - Luminosité intégrée : 20 fb⁻¹ par an puis 100 fb⁻¹
 - Fréquence de croisement des faisceaux : 40 MHz
 - Début en 2007...

Atlas

- Acronyme de A Toroidal LHC ApparatuS
- L'une des quatre expériences sur le LHC :
 - Atlas, CMS : expériences généralistes
 - Alice : lons lourds
 - LHCb : violation de CP

7000 tonnes

Buts :

- Reconstruire les traces chargées
- Mesurer leur impulsion
- Identification des particules

Calorimètre électromagnétique

Calorimètre hadronique

Buts :

 Mesurer l'énergie des électrons, photons, hadrons

Buts :

- Reconstruire les traces des muons
- Mesurer leur impulsion

A quoi sert un calorimètre électromagnétique ?

• Ses buts :

- reconstruire l'énergie des photons et électrons
- reconstruire une partie de l'énergie des hadrons
- participer à l'identification (séparation électrons/jets, $\gamma/\pi^0...$)
- reconstruire la direction incidente des photons (si le calorimètre est bien segmenté)
- Différents types de calorimètres : homogène, à échantillonnage...

Dans la suite, est détaillé le fonctionnement d'un calorimètre à échantillonnage plomb (milieu passif),argon liquide (milieu actif) (c'est le cas d'Atlas)

Le calorimètre électromagnétique d'Atlas

- Une des particularités du calorimètre électromagnétique d'Atlas : la géométrie en accordéon. Avantages :
 - rapidité
 - herméticité

La structure en accordéon

Le calorimètre électromagnétique d'Atlas

- Un des buts d'Atlas : la découverte du boson de Higgs. Un canal intéressant : H→γγ, mais nécessite bonne résolution en énergie
- Pour un calorimètre :

$$\frac{\boldsymbol{\sigma}_{E}}{E} = \frac{\boldsymbol{a}_{E}}{\sqrt{E}} \oplus \frac{\boldsymbol{b}_{E}}{E} \oplus \boldsymbol{c}_{E}$$

- où a_E = terme d'échantillonnage b_E = terme de bruit c_E = terme constant
- Pour atteindre une résolution de 1% sur la masse du Higgs, il faut $a_E < 10\% \text{ GeV}^{1/2} \text{ et } c_E < 0.7\%$
- Lors des études de physique, il est important de reconstruire l'énergie de toutes les particules + énergie transverse manquante (énergie des neutrinos, LSP...), donc nécessite bonne herméticité

Le calorimètre électromagnétique d'Atlas

- Le calorimètre électromagnétique d'Atlas est composé de :
 - un tonneau (couverture en pseudo rapidité $|\eta| < 1.4$)
 - deux bouchons (1.4< $|\eta|$ <3.2)

• Par la suite, on ne considère que les bouchons du calorimètre

Le bouchon du calorimètre électromagnétique

~4 m

Un module = 1/8^{ème} du bouchon

Bouchon dans son cryostat

Le bouchon du calorimètre électromagnétique

Un module en cours de câblage

Une électrode segmentée longitudinalement (profondeur) et transversalement en cellules selon η et Φ

Analyse des performances

- Afin de caractériser les performances du bouchon, test de 3 modules en faisceaux :
 - Cartographie de tous les modules avec des électrons de 120 GeV
 - Balayage en énergie en quelques points
 - Balayage avec des muons
 - ...
- J'ai extrait de ces tests :
 - Résolution en énergie
 - Uniformité

Corrections à apporter

Φ en unité d'absorbeur

Résolution en énergie

Uniformité

Conclusions

- Construction du calorimètre électromagnétique en cours d'achèvement (1^{er} trimestre 2004)
- 3 modules sur 16 testés en faisceaux
- Les premiers résultats sur la résolution en énergie et l'uniformité sont en accord avec performances attendues :
 - a_E < 10% GeV^{1/2}
 - c_E < 0.7%
- Beaucoup de travail reste à faire pour paramétrer les différentes corrections appliquées (correction des hautes tensions, des effets géométriques...)
- Outre cette analyse, j'ai commencé une étude sur la séparation électrons/jets avec des simulations