

Caractérisation de matériaux avancés à faible permittivité par Spectroscopie Temporelle d'Annihilation de Positons (PALS)

Julien Viret

N.D. Alberola, C. Bas (LMOPS) D. Sillou (LAPP)

Physique de l'Orthopositronium

Ppysialle fondamentale iv Physique fond in the second of the second of

Extra dimension

LMOPS Bourget du Lac _ LAPP Annecy le Vieux ETH Zurich _ INR Moscou _ CERI Orleans **CEA/LETI** de Grenoble

Caractérisation de Polymères et de matériaux Low-k

Taille des défauts accessibles par les différentes techniques en fonction de la profondeur accessible à l'analyse Dermittivité

semi-conducteurs et de l'interconnexion des composants.

(issu du site du Lawrence Livermore Laboratory – University of California - USA)

Mise au point et réalisation d'un détecteur, PALS (Positron Annihilation Lifetime Spectroscopy) permettant la caractérisation de matériaux nanoporeux.

Principe physique

Julien Viret 26/11/2003

Pick off

Principe de mesure du temps de vie

Spectre de la mesure du temps de vie

Besoin d'un grand nombre d'évènements : 1 000 000

=> Déconvolution

Précision de la mesure

Le profil d'implantation des positons émis peut être décrit par :

$$P(x) = e^{-\mu x}$$
 avec: $\mu(cm^{-1}) = 16.\rho(g.cm^{-3}).E_{max}^{-1,43}(MeV)$

Capacité de la mesure du PALS

Détection de la taille des pores :

- Détecte jusqu'à une profondeur de 700µm pour une densité de 1,3 g/cm³
- Détecte des tailles de pores allant de 0,1nm à qqs nm.

Tailles des pores : Modèle de Tao-Eldrup

$$\tau_3 = 0.5 \cdot \left[1 - \frac{R}{R + \Delta R} + \frac{1}{2\pi} \sin\left(\frac{2\pi \cdot R}{R + \Delta R}\right) \right]^{-1}$$

$$\tau_3 \text{ en ns}$$

R en $\overset{\circ}{A}$
 ΔR = 1,66 $\overset{\circ}{A}$

Principe du PALS

	Inorganique	Organique
	BaF ₂	BC 422
Temps de décroissance (ns)	0,7	1,6
Pic d'émission I (nm)	220	370
Rendement lumineux (relatif au Nal) en %	5	25
Photo-fraction (%)	19	~ 0

Exemple de detecteurs "Classique"

PALS au LAPP

1) Acquisitions des évènements sur disqueS2) Mesure des temps et des énergiesC3) Définition d'un trigger en coïncidenceT

Seuil, Stabilité => Off Line Déclenchement sur n'importe quel détecteur Taux comptage X2 (1 000 000 évènements)

Système d'acquisition

Amélioration de la quantité de lumière collectée : Contact optique et enrobage du cristal

Scintillateur + PM

Nbr photons détectés —

Si N / alors la résolution s'améliore

Matière enrobante Mylar Aluminé Millipore Tedlar blanc Tedlar noir Tavek Teflon

Mesure de la résolution avec du ⁶⁰Co

Julien Viret 26/11/2003

Résolution mesurée sur ⁶⁰Co

année	Auteur	FWHM avec du ⁶⁰ Co	Type de cristal	Taille des cristaux
1000	Becvar,	23556	BaE2	Diam 25 mm, haut 10 mm
1333	Cizek	200p8	Dar2	Diam 25 mm, haut 10 mm
2000			PoE2	Diam 25 mm, haut 12 mm => start
2000	CIZER	22005	Darz	Diam 25mm 40mm,haut 25 mm => stop
2001 H (d	H.Saito	140_170ps	BaF2	Diam 28 mm, haut 20 mm
	(digital)			Diam 28 mm, haut 10 mm
2003	Barthe	218ps	Plastique	Diam 40 mm, haut 30 mm
			BC422	Diam 30 mm, haut 20 mm
2003	Viret et al	170ps	BaF2	Cube 15 mm par 15 mm, haut 20mm

Conclusions

Notre PALS	PALS "classique"
Détecteurs doubles (à la fois Start et Stop) => Angle solide X2	détecteurs dédiés (un Start et un Stop)
Enregistrement des évènements sur disque	Tracé direct du temps de vie
=> Analyse off line	=> Histogramme
1 Seuil minimum, ajustement en software	Seuils fixes en énergie
=> Analyse off line	=> Encadrement 511 keV et 1,28MeV
Mesure de l'énergie	
=> Analyse off line	
Bruit de fond diminué (coïncidence)	Beaucoup de temps morts => Start sans Stop

Perspectives

- Améliorer la collection de lumière => améliorera la résolution en temps.
- > Ajout d'un contrôle des gains de PM.
- Possibilité de s'affranchir du CFD grâce à l'analyse off line ?
- Possibilité d'ajouter des détecteurs pour améliorer le taux de comptage.
- Validation du banc : _ Étude croisée avec d'autres Laboratoires. _ Comparaison avec d'autres techniques.
- > Ajout du faisceau de positon pulsé.

Choix des Isotopes

Radioisotope	Fraction de positon (%)	Temps	Emax des positons émis	Eγ (MeV)
C11	99	20 mois	0,977	
Na22	90	2,7 ans	0,54	1,28
TI44	88	47 ans	1,47	1,16
NI57	46	36 heures	0,4	1,4
CO58	15	71 jours	0,48	0,81
CU64	19	12,8 heures	0,66	
Zn65	1,7	245 jours	0,33	
Ga68	88	275 jours	0,98	

Julien Viret 26/11/2003

Effet Photo électrique

2- Comblement de l'orbitale

3- émission d'un photon de fluorescence

26/11/2003

Rendement quantique pour le XP 2020Q

$$QE (\%) = Ske_{(\lambda)} \frac{124}{\lambda}$$

Ske en mA/W

 λ en nm

- A 400nm => QE=24,8%
- A 220nm => QE=17%

CFD

> changement de discriminateur à fraction constante => meilleur walk donc meilleure résolution.

Discriminateur à fraction Constante

Calcul de la résolution en temps

Nbr événements

Calcul thermalisation

Energie de thermalisation = KT $E = KT = 8,65.10^{-5} \times 300$

Choix des PM

Marque et référence	Domaine spectral (nm)	QE (%)	Gain	Temps de montée (ns)	Temps de transit moyen (ns)	TTS (ns)
Hamamatsu R7400U 06	160 – 650	11 / 220nm	0,7.10 ⁶	0,78	5,4	0,23
Hamamatsu R5900U 06	160 – 650	11 / 220nm	2.10 ⁶	1,48	?	0,26
Hamamatsu R2083Q	160 – 650	15 / 220nm	2,5.10 ⁶	0,7	16	0,37
Philips XP2020Q	150 – 650	17 / 220nm	40.10 ⁶	1,5	28	0,25

Durée de vie de l'OrthoPositronium

La situation expérimentale n'est pas très claire. La précision de la mesure est de 200 ppm alors que la précision théorique est de 2 ppm Le but est donc d'améliorer QED:

Extra dimension

Théorie :

Une particule neutre peut disparaître dans une extra dimension.

=> l'OrthoPositronium est donc un bon candidat besoin de mesurer 10⁻⁸ ... 10⁻⁹ positons

Actuellement les mesures se font sur une source avec environ 10⁻⁶ positons sous gaz.

Thèse de Paolo Crivelli : cherche à atteindre les 10⁻⁸ ... 10⁻⁹

Contact : crivelli@cern.ch Thèse encadrée par : A.Roubia (ETH Zurich) et S.Gnenenko

Univers Miroir

Modèle expliquant la dissymétrie de l'univers (parité) :

Le complément de la parité violée serait dans un "monde miroir" où l'OrthoPositronium peut aussi disparaître.

Ceci est dû au fait que le monde miroir et le notre seraient couplés par la gravité mais également par un faible couplage électromagnétique qui subsiste.

- Mécanisme d'oscillation
- Besoin d'un Faisceau
- Besoin du vide

A.Roubia (ETH Zurich), S.Gnenenko (INR Moscou)