Report on the 2003 Workshop on MC tools for the LHC*

CERN, July 7 - Aug 2, 2003

Michelangelo Mangano TH Division, CERN

* http://mlm.home.cern.ch/mlm/mcwshopo3/mcwshop.html

Goal of the WShop: review status, assess readiness and outline needed progress of MC tools for the LHC

- accuracy: NLO, multijets, decays, PDFs, EW corrections, jet quenching, etc etc
- completeness: backgrounds and signals, SM & BSM
- realism: merging with shower/hadronization MC's
- reliability: cross-comparisons
- **validation**: comparison and tuning against existing (HERA, LEP, Tevatron) and LHC data
- **usability**: compliance with LHC software infrastructure requirements (C++, interfaces, MC datasets repositories)

M(ontecarlo) o(f) E(verything): integrating the best of all possible worlds

Matrix Element MC's

- Parton Level generators at NLO
 - KLN → negative-wgt events
- Formalism for extension to NNLO
 - Implementation of NNLO
- Implementaiton of resummation corrections to X-sections

Cross-Section Evaluators

- Formalism for extraction of colour flows
 - Common standards for event coding
- Implementation of double-counting removal in hadronic collisions

- Formalism for inclusion of NLO
- Implementation of resummation corrections to X-sections
- NLO accuracy in shower evolution
 - Inclusion of power corrections

Shower MC's

- Better treatment of radiation off heavy quarks
- Full treatment of spin correlations in production and decay
 - Better description of underlying event
 - Better decay tables

available

in progress

Example of NLO and shower integration

tt production with NLO accuracy in the Herwig shower MC (Frixione, Nason, Webber, Summer '03)

Working groups (conveners)

- 1. NLO & NNLO tools (Krauss, Glover, Carli)
- 2. MC's for new physics (Richardson, Skands)
- 3. Tools for heavy ion physics (Morsch)
- 4. C++ codes (Pythia7, Herwig++, Sherpa) (Ribon)
- 5. CLHEP, HepMC, MC truth, etc (Hinchliffe, de Roeck)
- 6. Matrix elements, shower MC's merging (Mangano, Richter-Was)
- 7. Tools for EW physics (Jadach)
- 8. Heavy quark and tau decay packages (Pokorski, Brook)
- 9. Parton Distribution Functions (Giele)
- 10. MB and MC tuning tools (de Roeck, Brook)

NLO, NNLO WG

- I week of intense activity, lots of seminars, discussions
- Directions:
 - evaluation of NNLO corrections to more processes (only DY and H available so far)
 - inclusion of results in event generators (so far only total X-sections or inclusive spectra available)
 - automatization of calculations
- Started studies trying to define what is the level of accuracy needed for different measurements, and to identify the areas where the tools require improvement: for each observable, need to define a hierarchy of theoretical systematic uncertainties to be addressed
- Example: experimental extraction of W cross section from the counting of lepton events passing a given set of experimental cuts (Frixione MLM)

	LO (MLM)	LO+HW
LHC cut 1	0.5237	0.4843
(no spin)	0.5520	
LHC cut 2	0.0576	0.1218
(no spin)		

NLO	MO@NLO
0.4771	0.4845
0.5104	0.5151
0.1292	0.1329
0.1504	0.1570

MC comparisons*, examples

W+multijet cross-sections

X-sects (pb)	Number of jets						
$e^-\bar{\nu}_e + n$ QCD jets	0	1	2	3	4	5	6
ALPGEN	3904(6)	1013(2)	364(2)	136(1)	53.6(6)	21.6(2)	8.7(1)
AMEGIC++	3905(4)	1014(3)	370(2)				
CompHEP	3947.4(3)	1022.4(5)	364.4(4)				
GR@PPA	3906.37 (4)	1046.85 (5)					
HELAC/PHEGAS/JetI	3786(81)	1021(8)	361(4)	157(1)	46(1)		
MadEvent	3902(5)	1012(2)	361(1)	135.5(3)	53.6(2)		

W+bb +multijets

X-sects (pb)	Number of jets				
$e^-\bar{\nu}_e + b\bar{b} + n$ QCD jets	0	1	2	3	4
ALPGEN	9.34(4)	9.85(6)	6.82(6)	4.18(7)	2.39(5)
AMEGIC++	9.42(5)	9.92(10)			
CompHEP	9.415(5)	9.91(2)			
HELAC/PHEGAS/JetI	9.88(11)	12.68(9)			
MadEvent	9.32(3)	9.74(1)	6.80(2)		

^{*} Dozens of bugs found and fixed, in the process!

MC's for new physics

- New physics models typically developed by non-MC physicists => new ideas can't be tested through detector simulations right away.
- Inclusion in MC's typically less complex than description of bg's, but still someone has to do it, and typically it is not the proponents of the new-physics models.
- Outcome (P.Skands et al, hep-ph/0311123):
 - An accord specifying generic file structures for 1) supersymmetric model specifications and input parameters, 2) electroweak scale supersymmetric mass and coupling spectra, and 3) decay tables is defined, to provide a universal interface between spectrum calculation programs, decay packages, and high energy physics event generators.

Underlying event and MC tunings

- New models for UE description presented and discussed
- Discussion of validation and tuning studies based on HERA and Tevatron data
- Discussion of automatic validation (MCtester) and tuning/fitting tools (HZtool, JetWeb)
- Consolidated link with
 Tevatron people, established
 benchmark studies and
 observables to be used for MC
 evaluation and tuning:

http://agenda.cern.ch/fullAgenda.php?ida=a031541

MC UE tuning with CDF data (R.Field, CDF)

Tuned PYTHIA (Set A) LHC Predictions

PDF's

- Until recently, a CERN Library product (PDFLIB) provided standardized access to up-to-date compilations of PDF parameterizations.
- PDFLIB not supported any longer, candidate for replacement is LHAPDF, a code developed by W. Giele at FNAL.
- Leading issue for the future: suitable framework for support of large sets of PDF used to assess systematic uncertainties
 - technical challenge (definition of "systematics")
 - architectural challenge (can't afford running 40 times the same MC to get the systematics from PDF)
- Work done to define more precisely the LHAPDF framework, definition of specs, etc.
- Involvement of M.Whalley (Durham HEP database, future repository of the code)

EW effects and observables

With the level of accuracy reached in the QCD part of the W cross-section calculations, EW effects start becoming important. Full inclusion of EW effects will require inclusion of QED effects in the PDF.

Does HERA have any sensitivity to these effects?

CERN-PH-TH/2004-022 FNT/T 2004/02

Comparisons of the Monte Carlo programs HORACE and WINHAC for single-W-boson production at hadron colliders*

C.M. Carloni Calame^{a,b}, S. Jadach^{c,d}, G. Montagna^{b,a}, O. Nicrosini^{a,b} and W. Płaczek^{e,d}

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	σ ^{tot} [nb]: WITH CUTS					
$\begin{array}{ c c c c c c } \hline \mbox{HORACE} & 3.23633(12) & 3.18707(13) & 3.18696(13) \\ \hline \mbox{WINHAC} & 3.23629(09) & 3.18779(07) & 3.18765(06) \\ \hline \mbox{$\delta = (W-H)/W$} & -1.2(4.6)\times 10^{-5} & 2.3(0.5)\times 10^{-4} & 2.2(0.5)\times 10^{-4} \\ \hline \mbox{$W^- \longrightarrow \mu^- \bar{\nu}_\mu$} \\ \hline \mbox{HORACE} & 3.23632(12) & 3.15990(12) & 3.16013(13) \\ \hline \mbox{WINHAC} & 3.23630(07) & 3.16418(06) & 3.16409(05) \\ \hline \mbox{$\delta = (W-H)/W$} & -0.6(4.3)\times 10^{-5} & 1.35(0.05)\times 10^{-3} & 1.25(0.05)\times 10^{-3} \\ \hline \end{array}$	Program	Born	$O(\alpha)$	Best			
$\begin{array}{ c c c c c c c }\hline \text{WINHAC} & 3.23629(09) & 3.18779(07) & 3.18765(06) \\\hline \delta = (\text{W} - \text{H})/\text{W} & -1.2(4.6)\times 10^{-5} & 2.3(0.5)\times 10^{-4} & 2.2(0.5)\times 10^{-4} \\\hline & & & & & & & & & & & & \\\hline W^- \longrightarrow \mu^-\bar{\nu}_\mu & & & & & & \\\hline \text{HORACE} & 3.23632(12) & 3.15990(12) & 3.16013(13) \\\hline \text{WINHAC} & 3.23630(07) & 3.16418(06) & 3.16409(05) \\\hline \delta = (\text{W} - \text{H})/\text{W} & -0.6(4.3)\times 10^{-5} & 1.35(0.05)\times 10^{-3} & 1.25(0.05)\times 10^{-3} \\\hline \end{array}$	$W^- \longrightarrow e^- \bar{\nu}_e$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HORACE	3.23633 (12)	3.18707 (13)	3.18696 (13)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WINHAC	` /	3.18779(07)	3.18765 (06)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\delta = (W - H)/W$	$-1.2(4.6) \times 10^{-5}$	$2.3(0.5) \times 10^{-4}$	$2.2(0.5) \times 10^{-4}$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$W^- \longrightarrow \mu^- \bar{\nu}_{\mu}$						
$\delta = (W - H)/W$ $-0.6 (4.3) \times 10^{-5}$ $1.35 (0.05) \times 10^{-3}$ $1.25 (0.05) \times 10^{-3}$	HORACE	3.23632 (12)	3.15990 (12)	3.16013 (13)			
	WINHAC	3.23630(07)	3.16418 (06)	3.16409 (05)			
$W^+ \longrightarrow e^+ \nu$	$\delta = (W - H)/W$	$-0.6(4.3) \times 10^{-5}$	$1.35(0.05) \times 10^{-3}$	$1.25(0.05) \times 10^{-3}$			
$\sim c \nu_e$	$W^+ \longrightarrow e^+ \nu_e$						
HORACE 4.39341 (16) 4.32186 (17) 4.32187 (18)	HORACE	4.39341 (16)	4.32186 (17)	4.32187 (18)			
WINHAC 4.39328 (13) 4.32286 (10) 4.32273 (08)	WINHAC	4.39328 (13)	4.32286(10)	4.32273 (08)			
$\delta = (W - H)/W$ $-3.0(4.7) \times 10^{-5}$ $2.3(0.5) \times 10^{-4}$ $2.0(0.5) \times 10^{-4}$	$\delta = (W - H)/W$	$-3.0(4.7) \times 10^{-5}$	$2.3(0.5) \times 10^{-4}$	$2.0(0.5) \times 10^{-4}$			
$W^+ \longrightarrow \mu^+ \nu_{\mu}$							
HORACE 4.39340 (16) 4.28255 (16) 4.28326 (16)	HORACE	4.39340 (16)	4.28255 (16)	4.28326 (16)			
WINHAC 4.39336 (10) 4.28837 (08) 4.28848 (08)	WINHAC	4.39336 (10)	4.28837(08)	\ /			
$\delta = (W - H)/W$ $-0.9(4.3) \times 10^{-5}$ $1.36(0.05) \times 10^{-3}$ $1.22(0.05) \times 10^{-3}$	$\delta = (W - H)/W$	$-0.9(4.3) \times 10^{-5}$	$1.36(0.05) \times 10^{-3}$	$1.22(0.05) \times 10^{-3}$			

C++ Shower-MC Codes

- F77 to C++ transition started 10yrs ago (L.Lonnblad), with infrastructure/tools: CLHEP, ThePEG
- Pythia7 (L.Lonnblad, Sjostrand, M.Bertini)
- Herwig++ (Gieseke, Stephens, Ribon, Richardson, Seymour, Webber)
- Sherpa (Gleisberg, Hoeche, Krauss, Schaelicke, Schumann, Winter)
- First versions (e+e- reactions) released for evaluation for the first time during the Workshop: very poor (-o) attendance by "users"
 - I day of hands-on tutorial for each code
- In any case, this is more than just C++:
 - new shower development algorithms
 - new hadronization models
 - better QCD, better selection of parameters for tuning
 - The PEG-driven modularity of tools, models, approx's
- These tutorials are documented and accessible via the WG Agenda page