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I will not talk about

• Matrix Element generators

• NLO generators

• SUSY and BSM

• Resummations and power corrections

• Heavy Ions
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Why do we need Monte Carlo
Event Generators

Blah blah blah blah blah. . .

The first commandment of event generation:

Thou shalt always conserve
energy and momentum
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Event Generators at LEP
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Who needs data when we have PYTHIA, HERWIG and ARIADNE?
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Event Generators at HERA
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At HERA we have a hadron in the initial state

There are initial-state parton showers, but they are not quite up to

the task at small x

Not even in the current region of the Breit frame, where things

should look like half an e+e− event. At small x the target region is

very much larger and hard emissions there affect the current region

(energy-momentum conservation).

Leif Lönnblad 8



Event Generators: HERA→LHC

All small-x problems at HERA are there at the LHC

In addition we have multiple scatterings and underlying events (also

in photoproduction at HERA)

HERA has a lot to tell us about where to trust the current event

generators at LHC

Leif Lönnblad 9



LEP HERA LHC

Gaps

HERWIG • • • with or without JIMMY

POMWIG

PYTHIA • • •

soft (and POMPYT or SCI)

ISAJET (•) •

PHOJET • • PYTHIA based always

SHERPA • (•) • AMEGIC + APACIC

ARIADNE • • (•) PYTHIA based (LDCMC for DIS) (pomeron)

CASCADE • (•)

RAPGAP • • PYTHIA based pomeron

LEPTO • PYTHIA based SCI

and more . . .
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Leif Lönnblad 10



LEP HERA LHC

Gaps

HERWIG • • • with or without JIMMY

POMWIG

PYTHIA • • •

soft (and POMPYT or SCI)

ISAJET (•) •

PHOJET • • PYTHIA based

always

SHERPA • (•) • AMEGIC + APACIC

ARIADNE • • (•) PYTHIA based (LDCMC for DIS)

(pomeron)

CASCADE • (•)

RAPGAP • • PYTHIA based

pomeron

LEPTO • PYTHIA based

SCI

and more . . .
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Forward activity

The second commandment of event generation:

Thou shalt never omit any part
of phase space

DGLAP based initial-state parton showers limits

emissions to be at lower scales than the hard

scattering. How severe is this restriction?

For forward jets at HERA it is clearly a severe

restriction.

For small-x and moderate scales it is clearly a

severe restriction. proton

P

k0

q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ
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ARIADNE is one of the most successful generators at HERA.

Treats all (gluon) radiation as final-state emissions from

colour-dipoles formed in the hard scattering.

All phase space is allowed, but suppressed in the forward direction

due to the extendedness of the hadron remnant.

Semi-classical picture which is difficult to relate to conventional

evolution schemes. But it seems to work.

Leif Lönnblad 12



RAPGAP (H. Jung) includes a resolved virtual photon and also works.

It is DGLAP based but the eq → eq is not

necessarily the hardest scattering in the event.

Gives two initial-state parton showers

The evolution is allowed to go up and then

down, but the whole phase space is not included.
proton

P

k0

q1

k1

q2

k2

q3

qn+1

kn

lepton

qγ
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k⊥-factorized (BFKL/CCFM)
generators

BFKL is the correct description of QCD in the high-energy limit

Really?

As soon as you have finite energies, the non-leading corrections are

huge.

Some of these corrections are due to the assumption that energy is

unlimited. Maybe the first commandment of event generation can

help us.
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Both CASCADE and LDCMC implements CCFM evolution

(BFKL + coherence, close to DGLAP at large Q2).

Both agree that non-leading corrections are large, even after

energy-momentum conservation.

Both can describe forward jet rates if only gluon ladders are included

and if only leading terms of the gluon splitting function is used.

With full splitting functions and quarks in the ladders it is difficult to

reproduce data.
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Do we care about forward jets
at the LHC?

At LHC we will be looking for high scale processes in the middle of

the detector.

But consider W-production. Typical x values at the Tevatron is

mW/S ∝ 0.01 − 0.1, but at LHC they are an order of magnitude

lower.

DGLAP-based generators cannot explore this extra phase space, but

nature certainly will.

Leif Lönnblad 18



Are these “small-x” effects noticeable already at Tevatron?

Neither PYTHIA or HERWIG can describe the W k⊥-spectrum at

small k⊥.

Adding a non-perturbative intrinsic transverse momentum

〈k⊥i〉 <
∼ 1 GeV due to Fermi motion does not help.

What is the typical evolution path?

ln
 k

⊥

y=ln x

ln mWDLGAP

ln
 k

⊥

y=ln x

ln mW

ln 2 GeV

DLGAP
LDC
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Leif Lönnblad 20



Forward region:
Too much or nothing at all

At HERA we have gaps basically once every ten events.

Lots of models can reproduce this:

Factorized pomerons

(POMPYT, POMWIG, RAPGAP)

Dipole/Saturation models

(SATRAP, BJLW)

Soft colour interactions

(LEPTO, PYTHIA)

GMARGETE

. . .

Fourth commandment of event generation:

Thou shalt never be satisfied
with reproducing inclusive cross
sections

Leif Lönnblad 21
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Only the factorized pomeron and SCI generators can be directly

applied at the LHC.

But there is a catch.

At the Tevatron only one event in a hundred has gap. Pomeron

factorization is broken

When you have rapidity gaps, you also have saturation, and you have

multiple scatterings — It’s the same triple-pomeron diagram cut in

different ways.
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Underlying events and Multiple
scattering

Most UE/MI models (JIMMY, PYTHIA, . . . ) are based on the

eikonalization of the jet cross section.

σhard(p2
⊥min) =

∫
p2

⊥min

dσhard(p2
⊥

)

dp2
⊥

dp2
⊥

Diverges faster than 1/p4
⊥min as p2

⊥min → 0 and eventually exceeds

the total inelastic (non-diffractive) cross section.

The average number of scatterings are given by

〈n〉 = σhard(p⊥min)/σnd
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Secondary interactions are not very hard, but PYTHIA models also

soft scatterings with partons. Instead of a cut, the partonic cross

section is regularized with

dσ̂

dp2
⊥

→
dσ̂

dp2
⊥

×
p4
⊥

(p2
⊥0 + p2

⊥
)2

αs(p
2
⊥

) → αs(p
2
⊥0 + p2

⊥
)

where p⊥0 ∼ 1 GeV and depends on the total energy.

The model also has an impact-parameter dependence where the

partons in a hadron is assumed to be distributed according to a

double Gaussian distribution. This introduces non-trivial correlations

between scatterings.
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It’s only a model, but it works:

"Transverse" PT Distribution (charged)
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There is a very strong dependence on soft cutoff, p2
⊥0, which is a

nasty parameter. It varies with energy and we can only make a

guestimate of what it will be at LHC.

But can we really treat these soft, very small-x, secondary

scatterings with collinear factorization?

Preliminary investigations using the LDC model gives results which

are consistent with PYTHIA, but almost insensitive to the soft cutoff.
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UE/MI at HERA

Photoproduction at HERA is a very good testbed for UE/MI models.

Using the xγ observable we can continuously switch on and off the

hadronic part in the photon and hence also the underlying event.

We can also vary the virtuality of the photon, from photoproduction

to DIS, and see what happens to the UE.

Maybe there is a jet pedestal under the forward jets cranking up the

cross section.
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The PYTHIA MI not only predicts the average number of scatterings,

it also predicts the distribution in number of scatterings.

If we have a pomeron-induced gap in hadron collisions, any

additional scattering will destroy the gap.

The probability of only having one scattering is the Gap Survival

Probability

PYTHIA predicts eg. for diffractive exclusive Higgs production a

survival probability of 0.040 (Tevatron) and 0.026 (LHC)

Cf. Khoze, Martin, Ryskin 0.046 (Tevatron) and 0.020 (LHC)

A factorized pomeron (plus reggeon) plus a gap survival probability

describes all hard diffraction at HERA and the Tevatron.
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Matrix Elements
and Parton Showers

Parton shower generators are not good at describing more than one

or two hard jets. If we want more we need to use Matrix Element

generators. But we still need parton showers to be able to use

hadronization models to get proper jets.

How do we combine ME and PS?

The third commandment of event generation:

Thou shalt never double-count
any part of phase space
(Cf. also the second commandment)
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A general fixed (second) order calculation

O+0jet = C0,0 + C0,1αs + C0,2α
2
s

O+1jet = C1,1αs + C1,2α
2
s

O+2jet = C2,2α
2
s

But all the coefficients are divergent in the soft and collinear limit,

so we need a cutoff.

When we add PS, we must not add radiation above this cutoff and

also not leave out any phase space below it.

But if you add a PS below the cutoff to an N-jet state from an ME

generator, the PS assumes there are no other emissions above.
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Parton shower generators do things to all orders, summing up all

virtual corrections to leading log into Sudakov form factors.

O+0jet = CPS
0,0∆S0

= CPS
0,0 + CPS

0,1αs + CPS
0,2α

2
s + . . .

O+1jet = CPS
1,1αs∆S1

= CPS
1,1αs + CPS

1,2α
2
s + CPS

1,3α
3
s + . . .

O+2jet = CPS
2,2α

2
s∆S2

= CPS
2,2α

2
s + CPS

2,3α
3
s + CPS

2,4α
4
s + . . .

. . .

O+1jet = CPS
1,1αs∆S1 is the cross section for to producing one

additional jet and nothing else. The Sudakov form factor is a

no-emission probability.

Also these coefficients are divergent. But when summed to all orders

the result is finite.

Leif Lönnblad 33



Parton shower generators do things to all orders, summing up all

virtual corrections to leading log into Sudakov form factors.

O+0jet = CPS
0,0∆S0 = CPS

0,0 + CPS
0,1αs + CPS

0,2α
2
s + . . .

O+1jet = CPS
1,1αs∆S1 = CPS

1,1αs + CPS
1,2α

2
s + CPS

1,3α
3
s + . . .

O+2jet = CPS
2,2α

2
s∆S2 = CPS

2,2α
2
s + CPS

2,3α
3
s + CPS

2,4α
4
s + . . .

. . .

O+1jet = CPS
1,1αs∆S1 is the cross section for to producing one

additional jet and nothing else. The Sudakov form factor is a

no-emission probability.

Also these coefficients are divergent. But when summed to all orders

the result is finite.
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The CKKW strategy

O+0jet = CME
0,0 ∆S0

O+1jet = CME
1,1 αs∆S1

O+2jet = CME
2,2 α2

s∆S2

. . .

Use tree-level ME generator with some cutoff. Make a jet

reconstruction to find a sequence of ordered emissions. Reweight

with the Sudakov form factors (and running αs) and add a (vetoed)

parton shower below the cutoff.

The dependence on the cutoff disappears to NNLL. But it is still

visible and some tuning is needed.
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S. Mrenna, P. Richardson
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CKKW: The ARIADNE version
Use tree level generator with some cutoff.

Make an inverse PS to see how ARIADNE would have generated this

state.

Use a Sudakov-veto algorithm to reweight with the exact Sudakovs

ARIADNE would have used.

Add PS below the cut, but take special care when adding to the

highest multiplicity state from the ME generator not to loose any

phase space.

Formally the same as CKKW, but no visible cutoff dependence and

no tuning needed.

Works for e+e−. Started implementing W production and DIS, but

there are problems with way of treating initial-state radiation.
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MC@NLO

(Frixione, Nason, Webber)

How can we improve also on the virtual corrections?

O+0jet = {CME
0,0 + (CME

0,1 − CPS
0,1)αs}∆S0

O+1jet = {CME
1,1 − CPS

1,1}αs + CPS
1,1∆S1

O+2jet = CPS
2,2α

2
s∆S2

. . .

The divergencies cancel analytically and we have no cutoff.

Only +1jet though . . .
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THEPEG & future Event
Generators

THEPEG consists of the parts of

PYTHIA7 which were not specific to the

PYTHIA physics models. It provides a

general structure for implementing

models for event generation.

Both PYTHIA7 and HERWIG++ are built

on THEPEG.

But it is open for anyone. . .

Basic Structure

CLHEP

ThePEG

HERWIG++

Physics Models

Basic Structure

Physics Models

Pythia7

CLHEP

ThePEG

Physics Models

Pythia7 HERWIG++

Physics Models

Basic Structure

CLHEP

ThePEG

Physics Model(s)

Other++
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The components of THEPEG

• Basic infrastructure: Smart pointers, extended type information,

object persistency, Exceptions, Dynamic loading, . . .

• Kinematics: Extra utilities on top of CLHEP vectors, 5-vectors,

flat n-body decay, . . .

• Repository: Manipulation of interfaced objects. Setting of

parameters and switches and connecting objects together.

• Handler classes: to inherit from to implement a specific physics

model.

• Event record: Used to communicate between handler classes.

• Particle data: particle properties, decay tables, decayers etc...
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THEPEG defines a set of abstract Handler classes for hard partonic

sub-processes, parton densities, QCD cascades, hadronization, etc. . .

These handler classes interacts with the underlying structure using a

special Event Record and a pre-defined set of virtual function

definitions.

The procedure to implement e.g. a new hadronization model, is to

write a new (C++) class inheriting from the abstract

HadronizationHandler base class, implementing the relevant

virtual functions. Plug it in and run. . .
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Status

THEPEG version 1.0α exists and is working. Snapshots of the current

development code is available from http://www.thep.lu.se/ThePEG.

PYTHIA7 is now based on THEPEG. Version 1.0α exists and is

working. Snapshots of the current development code is available

from http://www.thep.lu.se/Pythia7.

HERWIG++ is also based on THEPEG. Version 1.0 exists and s

working. Can be obtained from

http://www.hep.phy.cam.ac.uk/theory/Herwig++/.
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PYTHIA7/THEPEG (L.L., T. Sjöstrand) includes some basic 2 → 2

matrix elements, a couple of PDF parameterizations, remnant

handling, initial- and final-state parton showers, Lund string

fragmentation and particle decays.

HERWIG++ (S. Gieseke, A. Ribon, P. Richardson, M. Seymour,

P. Stephens, B. Webber) includes a new parton shower algorithm,

improved cluster fragmentation. Mainly e+e−, but initial-state PS is

coming.
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SHERPA

SHERPA is an alternative C++ framework for event generation

developed by F. Krauss et al.

It is a simpler design than THEPEG, and may have a lower learning

threshold.
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HZTOOL

Instead of just publishing the results of an experimental analysis, H1

and ZEUS publish the actual analysis routines applied to standard

event generator output (HEPEVT) and the data corrected to hadron

level.

A wonderful tool if your are developing a new model or tuning an

existing one. Just run your generator, inserting a couple of HZTOOL

calls, and out comes a clean comparison with published data.

JETWEB takes it a bit further to automate the comparison between

generators and data: http://jetweb.hep.ucl.ac.uk/

LHC should copy this concept.
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Conclusions

• Event generation is easy.

Just follow the Ten Commandments.

• We do not understand QCD at small x and in the forward

region.

HERA is the place to learn.

• We cannot get rid of the underlying event, we have to

understand it.

Again HERA may help.

• PS generators need to be improved with fixed order ME (or vice

versa).

We know how to do it in principle, but we’re not quite

there. HERA is the place to test it.

• The future has a ++ appended to it.
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