HERA and the LHC workshop

TOTEM: Early diffractive physics at the LHC

Fabrizio Ferro
INFN Genova

on behalf of the TOTEM collaboration
http://totem.web.cern.ch/Totem/

TOTEM goals

- Measurement of the p-p total cross section at 14 TeV with 1% uncertainty with the luminosity independent method
- Measurement of the p-p elastic scattering in the range $10^{-3}<-\mathrm{t}<10 \mathrm{GeV}^{2}$
- Study of diffractive events, together with CMS.

Experimental apparatus

- Inelastic detectors
- T1 - CSC Coverage $\sim 3<|\boldsymbol{\eta}|<\sim 5$
- T2 - GEM Coverage $\sim 5<|\boldsymbol{\eta}|<\sim 7$
- Leading proton detectors
- Silicon detectors inside Roman Pots (at 147, 180,220 m from IP)
 TMTN Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Inelastic detectors

TOTEM inelastic detectors are trackers which have been designed to discriminate between beam-beam and background (eg. beam-gas) events by means of the primary vertex reconstruction.

Roman pots

The RPs allow the leading proton detectors to move close to the circulating beam

QRL (LHC Cryogenic Line)

The LPD have to be efficient starting at $10 \sigma(\sim 1 \mathrm{~mm})+0.5 \mathrm{~mm}$ and must provide $\operatorname{good}(\sim 20 \mu \mathrm{~m})$ resolution, hence detectors with a small inefficient edge.

Si 3D
Planar Si with guard rings

Electrodes created inside the bulk.
The edge is an electrode.
Dead edge $<10 \mu \mathrm{~m}$
Test SPS:
transition in
$\sim 6 \mu \mathrm{~m}$

Transition in $\sim 60 \mu \mathrm{~m}$

TOTEM Optics Conditions

$$
\mathcal{L}_{\text {тотем }} \sim 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

TOTEM needs special/independent short runs at high $-\beta *$ ($\mathbf{1 5 4 0 m}$) and low ε Scattering angles of a few $\mu \mathrm{rad}$
High- β optics for precise measurement of the scattering angle

$$
\begin{aligned}
& \sigma\left(\theta^{*}\right)=\sqrt{ } \varepsilon / \beta^{*} \sim 0.3 \mu \mathrm{rad} \\
& \sigma^{*}=\sqrt{ } \varepsilon \beta^{*} \sim 0.4 \mathrm{~mm}
\end{aligned}
$$

Reduced number of bunches (43 and 156) to avoid interactions further downstream

Parallel-to-point focusing ($\mathrm{v}=0$) :

Trajectories of proton scattered at the same angle but at different vertex locations

$$
\begin{array}{ll}
y=L_{y} \theta_{y}^{*}+v_{y} y^{*} & L=\left(\beta \beta^{*}\right)^{1 / 2} \sin \mu(s) \\
x=L_{x} \theta_{x}{ }^{*}+v_{x} x^{*}+\xi D_{x} & v=\left(\beta / \beta^{*}\right)^{1 / 2} \cos \mu(s)
\end{array}
$$

Maximize L and minimize v

Measurement of $\sigma_{\text {tot }}$

Measurement of the total cross section with the luminosity independent method using the Optical Theorem.

$$
\left.\begin{array}{c}
\mathrm{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N}{d t}\right|_{t=0} \\
\mathrm{~L} \sigma_{\text {tot }}=N_{\text {elastic }}+N_{\text {inelastio }}
\end{array}\right\} \leadsto \sigma_{\text {tot }}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.(d N / d t)\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
$$

Measurement of the elastic and inelastic rate with a precision better than 1%.

Elastic Scattering and Diffraction

 Coulomb scattering: $\mathrm{d} \sigma / \mathrm{d} \dagger \propto 1 / \dagger^{2}$

Characteristic - $\dagger(\mathrm{GeV} / \mathrm{c})^{2}$ Run type ${ }^{1}$

Coulomb region
Coulomb -Strong Interference
Pomeron-Diffraction $\quad \geq 10^{-3}$
Structure - Peaks \& Bumps
Large -† - Perturbative QCD

$$
\begin{aligned}
& \leq 10^{-4} \\
& \approx 10^{-3} \\
& \geq 10^{-3} \\
& \approx 0.8 \\
& \geq 5
\end{aligned}
$$

very high β^{\star} high β^{*} high/low $\beta^{\text {* }}$ low/high β^{*} low β^{*}

TMTM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

\dagger and ϕ resolution

$\sigma(\dagger) / \dagger$ vs detector resolution

ϕ resolution Vs \dagger

Extrapolation to $\mathrm{t}=0$

The measurement of $\sigma_{\text {tot }}$ needs $(\mathrm{dN} / \mathrm{dt})_{t=0}$ which can be estimated with a statistical uncertainty of $\sim 0.1 \%$ (considering 10^{7} reconstructed events after 10 h run at $\mathrm{L}=10^{28}$).

	Uncertainty	Fit error
Beam divergence	10%	0.05%
Energy offset	0.05%	0.1%
Beam/ detector offset	$20 \mu \mathrm{~m}$	$0.06 / 0.08 \%$
Crossing angle	$0.2 \mu \mathrm{rad}$	$0.08 / 0.1 \%$
Theoretical uncertainty	(model dependent) $\sim 0.5 \%$	

Inelastic cross section

Event selection:

- trigger from T1 or T2 (double arm o single arm)
- Vertex reconstruction (to eliminate beam-gas bkg.)

Lost events

Losses	Double arm		Single arm	
Process	$\%$	mb	$\%$	mb
Minimum bias	0.5	0.3	<0.1	<0.06
Double Diffractive	39.5	2.8	4.6	0.3
Single Diffractive	-	-	17.9	2.5

Extrapolation for diffractive evesints needed

Total cross section

$$
\left(\sigma_{\text {inel }} \sim 80 \mathrm{mb}, \sigma_{\mathrm{el} .} \sim 30 \mathrm{mb}\right)
$$

Losses (mb)

>90\% of all diffractive protons are seen in the Roman Pots proton momentum can be measured with a resolution of few 10^{-3}

CMS/TOTEM

CMS/TOTEM is the largest acceptance detector ever built at a hadron collider $\overline{\bar{W}}$

For the first time at a collider large acceptance detector which measures the forward energy flow

1 day run at large beta (1540 m) and $L=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$:
100 million minimum bias events, including all diffractive processes

Single Diffractive Excitation

Double Diffractive Excitation

Double Pomeron Exchange

The Pomeron has the internal quantum numbers of vacuum.

$$
\begin{aligned}
& P P: C=+, I=0, \ldots \\
& P: \quad J^{P}=0^{+}, 2^{+}, 4^{+}, \ldots \\
& \Rightarrow P P: J^{P C}=0^{++}
\end{aligned}
$$

Double Pomeron Exchange

$\xi=\Delta \mathrm{p} / \mathrm{p}$ proton momentum loss

M (GeV)

$\xi_{1}=\xi_{2}$

CMS/TOTEM collaboration for diffractive physics
$\beta^{*}=1540 \mathrm{~m} \quad \sigma_{\xi}=0.5 \%$
$\beta^{*}=200-400 \mathrm{~m} \sigma_{\xi}=$ few $\%$
$\beta^{*}=0.5 \mathrm{~m} \sigma_{\xi}=$ few \%o
Trigger via Roman pots
Trigger via rapidity gap
$\xi>2.510^{-2}$
$\xi<2.510^{-2}$

TMW Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Level-1 Trigger

$$
\mathrm{L}=10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Double Pomeron (Photon) Exchange

Elastic Trigger:
Signal: $\quad 500 \mathrm{~Hz}$ Background: $\mathbf{2 0 ~ H z}$
Single Diffractive Trigger:
Signal: 200 Hz Background: 0.1 Hz

Double Diffractive Trigger:
Signal: $\quad 100$ Hz

Central Diffractive Trigger:
Signal: $\quad 10 \mathrm{~Hz}$
Background: 2 Hz
Minimum Bias Trigger:
Signal: $\quad 1$ kHz

TMT Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC
The Trigger Logic

- Beam Halo (dominant): Reduction only by 2 -arm coincidence
- Shower particles from beam-beam, beam-gas, beam-machine interactions:

Reduction by:

- Multiple coincidences
- Angular cuts
- Hit and track multiplicity cuts
- To make common running easier, DAQ and Trigger will be implemented in CMScompatible fashion
- Hardware and software compatibility opens the possibility for TOTEM to join the CMS DAQ when making common runs.
- Front-ends will comply with CMS Trigger Control System if TOTEM wants to join the CMS Trigger.
- Possible triggering schemes
- The CMS GT receives the TOTEM trigger decision and sends L1A both to TOTEM and CMS front-ends.

Running Scenarios

Scenario (goal)	$\begin{gathered} 1 \\ \text { low }\|\mathrm{t}\| \text { elastic, } \\ \sigma_{\mathrm{tot}}, \text { min. bias } \end{gathered}$	2 diffr. phys., large \mathbf{p}_{T} phen.		3 intermediate $\|\mathbf{t}\|$, hard diffract.	4 large $\|t\|$ elastic
$\beta^{*}[\mathrm{~m}]$	1540	1540		200-400	18
N of bunches	43	156		936	2808
Half crossing angle [$\mu \mathrm{rad}$]	0	0		100-200	160
Transv. norm. emitt. [$\mu \mathrm{m}$ rad]	1	1	3.75	3.75	3.75
N of part. per bunch	0.3×10^{11}	$\begin{gathered} \hline \mathbf{0 . 6 ~ x} \\ 10^{11} \end{gathered}$	$\begin{gathered} 1.15 \mathrm{x} \\ 10^{11} \end{gathered}$	1.15×10^{11}	1.15×10^{11}
$\begin{aligned} & \text { RMS beam size at IP } \\ & {[\mu \mathrm{m}]} \\ & \hline \end{aligned}$	454	454	880	317-448	95
RMS beam diverg. [$\mu \mathrm{rad}$]	0.29	0.29	0.57	1.6-1.1	5.28
$\begin{gathered} \text { Peak luminos. }\left[\mathrm{cm}^{-2}\right. \\ \left.\mathrm{s}^{-1}\right] \end{gathered}$	1.6×10^{28}	2.4×10^{29}		$(1-0.5) \times 10^{31}$	3.6×10^{32}

Running scenario examples

Luminosity $2 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Data taking for soft diffraction : $20 \mathrm{mb} \longrightarrow 4 \mathrm{kHz} \longrightarrow 4 \cdot 10^{8}$ events / 1 eff. Day
Double Pomeron : $1 \mathrm{mb} \quad 2 \cdot 10^{7}$ events / 1 eff. Day
Precise study of soft diffraction phenomena
Luminosity $10{ }^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Few day runs with $410^{5} \mathrm{~s} \longrightarrow 410{ }^{36} \mathrm{~cm}^{-2} \longrightarrow 4000$ evts / nb
Double Pomeron exchange
High masses order of TeV
$\chi_{c} \longrightarrow 10^{6-7}$ events before decay
$\chi_{b} \longrightarrow 10^{3-4}$ events before decay
Large pt di jets \longrightarrow coplanar dijet with two accompanying protons and nothing else

Single diffraction with high pt jets and leptons
Study of rapidity gaps with identified protons

- TOTEM TDR submitted to the LHCC in January lhсс 2004-002тотем TDR 1
- A TDR on the common CMS/TOTEM physics program will be submitted later.

Diffraction at LHC:

Double
Pomeron
(Photon)
Exchange

Multi
Pomeron Exchange

PP scattering at highest energy Soft \& Hard Diffraction

$$
\xi<0.1 \Rightarrow O(1) \mathrm{TeV} \text { "gluon beams" }
$$

E.g. Structure of the Pomeron $F\left(\beta, Q^{2}\right)$ β down to $\sim 10^{-3} \& Q^{2} \sim 10^{4} \mathrm{GeV}^{2}$ Diffraction dynamics? Exclusive final states?

Rapidity gap physics - multigaps!

High β optics: lattice functions

$$
y=L_{y} \theta_{y}^{*}+v_{y} y^{*}
$$

$$
x=L_{x} \theta_{x}^{*}+v_{x} x^{*}+D \xi
$$

