WG2: Multi-jet final states and energy flows

Sessions:

- Underlying Events and Minimum Bias
- Parton Shower and Matrix Elements matching
- Multi-jet topologies and multi-scale QCD
- •Rapidity gaps and survival probabilities
- Common session with the Diffraction group

Session 1 Underlying Events and Minimum Bias

Co-ordinate comparisons of data with models: Pythia, Phojet, Herwig

- •Need to be able to use pythia for γp to test LHC tunings at HERA
- •B-mesons in min bias events
- Agree standard set of plots and basic data to compare
 Study the effect of underlying event on some favourite LHC channels
- •Higgs in WH, VBF
- •Two pt-cut implementation in Jimmy, can now used for underlying event Connection to saturation, underlying event in DIS

Session 2 Parton Showers and Matrix Elements matching

A lot of theoretical activity in this area, MC@NLO, HERWIG however mainly for pp.

So a plea for theorists to apply this also to HERA data so that models can be benchmarked at HERA

MC@NLO@HERA will be looked at

PYTHIA vs PHOJET

Moraes

Jetweb comparison

Preliminary

ZEUS precision di-jet Photoproduction data

	dσ/dxγχ²/DF	
Jet ET-	Defaul	AM tune
B3090	1.4	3.1
25-35	6.8	2.0
17-25	0.9	1.0
14-17	4.0	7.5

Default Pythia

Increasing sensitivity to Underlying event

Tuned Pythia

Moraes

Session 3: Multi-jet topologies and multi-scale QCD

Theoretical effort to solve technical issues

Non-global logs, quarks in cascade, BFKL@NLO

Measurements already made at HERA- azimuthal jet correlations, forward jets

- •What measurements can be made at day-1 LHC to benchmark models?
- •Look at application to LHC processes, particularly forward jets in WW-fusion
- •Jet defns of forward jets, experience from HERA→LHC

Session 4: Rapidity gaps and survival probabilities

Forward protons/neutrons at HERA, information on re-scattering

How does this go into models?

Study of Azimutal Correlations beteen two hardest jets

DGLAP: $g(x, \kappa^2_T, Q^2) \rightarrow g(x, Q^2)$

$$\rightarrow \kappa_t^2 \approx 0$$

LO: $\Delta \phi^* = \pi$

HE (e.g. PS): $\Delta \phi^* \neq \pi$

NON-DGLAP e.g. ARIADNE

$$\kappa_t^2 \neq 0 \rightarrow \Delta \phi^* \neq \pi$$

Turnau

Inclusive jet production – foward region

- Forward region, $1.5 < \eta_{\rm lab} < 2.8$ in more detail.
- Discrepancy between data and NLO large at low Q^2 and low E_T .

 Improved calculations are needed; Contributions proton PDF's? virtual photon structure? alternative evolution schemes (CCFM, BFKL)?

Major Experimental Issues

=ake**眠链的**。

30

8.0

20

(0)

0.6

Major experimental issues addressed with a full detector

simulation (Geant3)

- Tagging forward jets:
 - -Efficiencies critical
 - -Full simulation used
 - -Double tag efficiency ~50%
- Central jet veto:
 - –Pile up effects introduce fake 0.4central jets 10
 - Effect small at low luminosity _{0.2}
 - Serious concern at high luminosity
 - Very sensitive to underlying effect
 - Detailed studies underway

Clear areas where HERA physics is crucial for LHC studies:

Both theoretically and experimentally

Personal list....

- minimum bias and the underlying event
- forward jets
- defining measurements to be made on day-1 for LHC

We look forward to productive work over the next year!