

SUSY

New particles at TeV scale stabilize m_H

Additional dimensions

ightarrow $M_{gravity}$ M_{EW} New states at TeV scale

Little Higgs

Technicolour

New strong interactions break EW symmetry

→ Higgs (elementary scalar) removed

New particles at TeV scale

 $\delta m_{H} \sim \Lambda$ (scale up to which SM is valid)

⇒ New Physics at TeV scale to stabilize m_H

Split SUSY

Accept fine-tuning of m_H
(and of cosm. constant)
by anthropic arguments
Part of SUSY spectrum at TeV scale
(for couplings unification and dark matter)

- What can be done at the beginning?
- 2 Signal interpretation and constraints of underlying theory?

• What can be done at the beginning?

The first LHC data: from Summer 2007...

1 fb⁻¹ (10 fb⁻¹) \equiv 6 months at 10^{32} (10^{33}) cm⁻²s⁻¹ at 50% efficiency \rightarrow may collect several fb⁻¹ per experiment by end 2008

Channels (<u>examples</u>)	Events to tape for 1 fb ⁻¹ (per expt: ATLAS, CMS)	Total statistics from previous Colliders	
$W \rightarrow \mu \nu$	7 × 10 ⁶	~ 10 ⁴ LEP, ~ 10 ⁶ Tevatron	
$Z \rightarrow \mu \mu$	~ 106	~ 10 ⁶ LEP, ~ 10 ⁵ Tevatron	
$tt \rightarrow W b W b \rightarrow \mu \nu + X$	~ 10 ⁵	~ 10 ⁴ Tevatron	
$\widetilde{g}\widetilde{g}$ m = 1 TeV	10 ² - 10 ³		

With these data:

Understand and calibrate detectors in situ using well-known physics samples

e.g. $-Z \rightarrow ee$, $\mu\mu$ tracker, ECAL, Muon chambers calibration and alignment, etc. $-tt \rightarrow blv\ bjj$ jet scale from W \rightarrow jj, b-tag performance, etc.

• Measure SM physics at \sqrt{s} = 14 TeV : W, Z, tt, QCD jets ... (omnipresent backgrounds to New Physics)

 \rightarrow prepare the road to discovery it will take a lot of time ...

Preparing the detectors to explore the hierarchy problem ...

Example: the ATLAS electromagnetic calorimeter

Pb-liquid argon sampling calorimeter with Accordion shape, covering $|\eta|$ < 2.5

100 fb⁻¹

 $H \to \gamma \gamma$: to observe signal peak on top of huge $\gamma \gamma$ background need mass resolution of ~ 1% \to response uniformity (i.e. total constant term of E-resolution) $\leq 0.7\%$ over $|\eta| < 2.5$

Construction quality

Thickness of Pb plates must be uniform to 0.5% (\sim 10 μ m)

2 Test-beam measurements

Scan of a barrel module ($\Delta \phi x \Delta \eta$ =0.4X1.4) with high-E electrons

3 Cosmics runs:

Measured cosmic μ rate in ATLAS pit : few Hz

- → ~ 10⁶ events in ~ 3 months of cosmics runs beginning 2007
- > enough for initial detector shake-down
- \rightarrow ECAL: check calibration vs η to 0.5%

4 First collisions: calibration with $Z \rightarrow ee \ events$ (rate $\approx 1 \ Hz \ at \ 10^{33}$)

Use Z-mass constraint to correct long-range non-uniformities (module-to-module variations, effect of upstream material, etc.)

~ 10^5 Z \rightarrow ee events (few days data taking at 10^{33}) enough to achieve constant term $c \le 0.7\%$

Nevertheless, let's consider the worst (unrealistic?) scenario: no corrections applied

ECAL non-uniformity at construction level, i.e.:

- -- no test-beam corrections
- -- no calibration with $Z \rightarrow ee$

 $H \rightarrow \gamma \gamma$ significance m_H~ 115 GeV degraded by ~ 25% \rightarrow need 50% more L for discovery

First cosmic muons observed by ATLAS in the pit on June 20th (recorded by hadron Tilecal calorimeter)

Example of initial SM measurement: top signal and top mass (relevant to New Physics)

Bentvelsen et al.

- Use gold-plated tt ightarrow bW bW ightarrow blv bjj decay
- Very simple selection:
 - -- isolated lepton (e, μ) p_T > 20 GeV
 - -- exactly 4 jets $p_T > 40 \text{ GeV}$
 - -- no kinematic fit
 - -- no b-tagging required (pessimistic, assumes trackers not yet understood)
- Plot invariant mass of 3 jets with highest p_T

ay	ATLAS 150 pb ⁻¹ (< 1 week at 10 ³³)
	300 B
	200 - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	150
Т	100
	B=W+4 jets (ALPGEN MC) 0 50 100 150 200 250 300 350 400
	M (jjj) GeV

Time	Events at 10 ³³	Stat. error $\delta M_{top}(GeV)$	Stat. error $\delta\sigma/\sigma$
1 year	$3x10^{5}$	0.1	0.2%
1 month	$7x10^4$	0.2	0.4%
1 week	$2x10^{3}$	0.4	2.5%

- top signal visible in few days also with simple selection and no b-tagging
- cross-section to ~ 20%
- top mass to ~7 GeV (assuming b-jet scale to 10%)
- get feedback on detector performance:
 m_{top} wrong → jet scale?
 gold-plated sample to commission b-tagging
- tt is background to many searches

F. Gianotti, Lepton-Photon 2005

What about early discoveries? Three examples relevant to the hierarchy problem ...

An easy case: a new (narrow) resonance of mass ~ 1 TeV decaying into ete-,

e.g. a Z' or a Graviton $\rightarrow e^+e^-$ of mass ~ 1 TeV

An intermediate case: SUSY

An "easy case": $G \rightarrow e+e-resonance$ with m ~ 1 TeV

predicted in Randall-Sundrum Extra-dimensions

BR ($G \rightarrow ee \approx 2\%$), c = 0.01 (small/conservative coupling to SM particles)

Mass (TeV)	Events for 10 fb ⁻¹ (after all cuts)	(≥ 10 observed events)
0.9	~ 80 ~ 25	~ 1.2 fb ⁻¹ ~ 4 fb ⁻¹
1.25	~ 13 CMS	~ 8 fb ⁻¹

- large enough signal for discovery with \(\text{Ldt} \le 10 \) fb⁻¹ for m < 1.3 TeV
- · dominant Drell-Yan background small
- · signal is mass peak above background

C. Collard

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

An "intermediate case": SUPERSYMMETRY

If SUSY stabilizes $m_H \rightarrow is$ at TeV scale \rightarrow could be found quickly thanks to:

- large $\widetilde{q}\widetilde{q},\widetilde{q}\widetilde{g},\widetilde{g}\widetilde{g}$ cross-section $\rightarrow \approx$ 100 events/day at 10³³ for $m(\widetilde{q},\widetilde{g}) \sim 1~{\rm TeV}$
- · spectacular signatures

A difficult case: a light Higgs ($m_H \sim 115 \ GeV$) ...

Full GEANT simulation, simple cut-based analyses

_ K-factors ≡ σ (NLO)/ σ (LO) ≈ 2 <u>not</u>included

Remarks:

Each channel contributes ~ 2σ to total significance \rightarrow observation of all channels important to extract convincing signal in first year(s)

The 3 channels are complementary \rightarrow robustness:

- different production and decay modes
- different backgrounds
- different detector/performance requirements:
 - -- ECAL crucial for H $\rightarrow \gamma\gamma$ (in particular response uniformity) : $\sigma/m \sim 1\%$ needed
 - -- b-tagging crucial for ttH: 4 b-tagged jets needed to reduce combinatorics
 - -- efficient jet reconstruction over $|\eta|$ < 5 crucial for qqH \to qqtt : forward jet tag and central jet veto needed against background

Note: -- all require "low" trigger thresholds E.g. ttH analysis cuts: $p_{\tau}(l) > 20$ GeV, $p_{\tau}(jets) > 15-30$ GeV -- all require very good understanding (1-10%) of backgrounds

If $m_H > 180 \text{ GeV}$: early discovery may be easier with $H \rightarrow 41$ channel

Luminosity needed for 5 σ discovery (ATLAS+CMS)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

- H \rightarrow WW \rightarrow lv lv : high rate (~ 100 evts/expt) but no mass peak \rightarrow not ideal for early discovery ...
- \cdot H \rightarrow 41: low-rate but very clean: narrow mass peak, small background

Extra-dimensions (ADD models)

Look for a continuum of Graviton KK states:

 \rightarrow topology is jet(s) + missing E_T

Cross-section
$$\approx \frac{1}{M_{\rm D}} \delta^{+2}$$

 M_D = gravity scale

 δ = number of extra-dimensions

ATLAS, 100 fb-1

	δ = 2	δ = 3	δ = 4
M_D^{max}	9 TeV	7 TeV	6 TeV

Discriminating between models:

- -- SUSY: multijets plus E_T^{miss} (+ leptons, ...)
- -- ADD : monojet plus E_ miss

To characterize the model need to measure $\,M_D$ and δ

Measurement of cross-section gives ambiguous results: e.g. δ =2, M_D = 5 TeV very similar to δ =4, M_D = 4 TeV

Solution may be to run at different \sqrt{s} :

Good discrimination between various solutions possible with expected <5% accuracy on $\sigma(10)/\sigma(14)$ for 50 fb^{-1}

Little Higgs 🐧 models

Alternative approach to the hierarchy problem predicting heavy top T (EW singlet), new gauge bosons W_H , Z_H , A_H and Higgs triplet Φ^0 , Φ^+ , Φ^{++}

Observation of $T \rightarrow Zt$, Wb discriminates from 4th family quarks Observation of $V_H \rightarrow Vh$ discriminates from W', Z'

Other scenarios

Large number of scenarios studied:

- ⇒ demonstrated detector sensitivity to many signatures
 - ightarrow robustness, ability to cope with unexpected scenarios
- \Rightarrow LHC <u>direct</u> discovery reach (hence exploration of hierarchy problem ...) up to m \approx 5-6 TeV

Excited leptons ; e*e, e* \rightarrow Wv \rightarrow jj v

LFV: $W \to \tau \nu$, $\tau {\to} \; 3 \mu$

CMS, 10 fb⁻¹ BR=1.9 x 10⁻⁶ Reach (30 fb⁻¹): la essor icture.

Constraining the underlying theory ...

Courtesy M. Duehrssen

Measurements of the SM Higgs parameters

Lot of useful information to constrain the theory

(though not competitive with LC precision of e.g. \approx % on couplings)

Higgs self-coupling λ

- not accessible at LHC
- may be constrained to \approx 20% at Super-LHC (L=10³⁵)

Higgs spin and CP

Promising for m_H > 180 GeV (H \rightarrow ZZ \rightarrow 41), difficult at lower masses

Buszello et al. SN-ATLAS-2003-025

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Significance for exclusion of $J^{CP}=0^+$

ATLAS + CMS, 2 × 300 fb⁻¹

	m _H (GeV)	$J^{CP} = 1^+$	J ^{CP} = 1-	J ^{CP} =0-
١	200	6.5 σ	4.8 σ	40 σ
	250	20 σ	19 σ	80 σ
١	300	23 σ	22 σ	70 σ

Precise SUSY measurements

Mass peaks cannot be directly reconstructed $(\chi^0_1 \text{ undetectable}) \to \text{measure invariant mass}$ spectra (end-points, edges,...) of visible particles \to deduce constraints on combinations of sparticle masses

Putting all measurements together:

- deduce several sparticle masses: typical precision 1%-20%
 Model-indep. (just kinematics), but interpretation is model-dep.
- · from fit of model to all experimental measurements derive
 - -- sparticle masses with higher accuracy
 - -- fundamental parameters of theory to 1-30%
 - -- dark matter (χ^0_1) relic density and $\sigma(\chi^0_1$ nucleon)

demonstrated so far in mSUGRA (5 param.) and in more general MSSM (14 param.)

Direct Dark Matter searches

DAMA

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Zepelin, CDMS, Edelweiss

__ present limit --- projected

General strategy toward understanding the underlying theory (SUSY as an example ...)

Discovery phase: inclusive searches ... as model-independent as possible

First characterization of model: from general features: Large E_Tmiss? Many leptons? Exotic signatures (heavy stable charged particles, many γ 's, etc.)? Excess of b-jets or τ 's? ...

Interpretation phase:

- reconstruct/look for semi-inclusive topologies, eg.:
 - -- h \rightarrow bb peaks (can be abundantly produced in sparticle decays)
 - -- di-lepton edges
 - -- Higgs sector: e.g. A/H $\rightarrow \mu\mu$, $\tau\tau \Rightarrow$ indication about tan β , measure masses
 - -- tt pairs and their spectra \Rightarrow stop or sbottom production, gluino \rightarrow stop-top
- determine (combinations of) masses from kinematic measurements (e.g. edges ...)
- measure observables sensitive to parameters of theory (e.g. mass hierarchy)

At each step narrow landscape of psible models and get guidance to go on: • lot of information from LHC date masses, cross-sections, topologies, etc.)

- · consistency with other data (astrophysics, rare decays, etc.)
- · joint effort theorists/experimentalists will be crucial

What the LHC can do and cannot do

SUSY as an example ...

In general the LHC can (examples ...):

- discover SUSY up to m ($_{\widetilde{q}}$ $_{\widetilde{g}}$) ~ 2.5 TeV measure lightest Higgs h mass to ~ 0.1%
- derive sparticle masses (typically $\chi_{0.2}$, $\chi_{0.2}$) from kinematic measurements constrain underlying theory by fitting a model to the data

More difficult or impossible (examples ...):

- disentangle squarks of first two generations
- observe / measure sleptons if m > 350 GeV
- · measure full gaugino spectrum
- measure sparticle spin-parity and all couplings
- constrain underlying theory in model-indep. way

1/M₁

QuickTime™ and a TIFF (LZW) de 1/M2 essor are needed to seu icture.

 $1/M_3 = m(\widetilde{g})$

Colour bands : LHC Black lines: LHC+ LC

complementarity with LC

Ultimate goal: from precise measurements of e.g. gaugino masses at the TeV scale reconstruct high-E theory Q (GeV)

Conclusions

- In 2 years from now, particle physics will enter a new epoch, hopefully the most glorious and fruitful of its history.
- Indeed, the hierarchy problem motivates strongly New Physics at the TeV scale
- The LHC will explore this scale in detail with direct discovery potential up to m \approx 5-6 TeV
 - → if New Physics is there, the LHC will find it
 - → it will say final word about many TeV-scale predictions
 - → it will tell us which are the right questions to ask, and how to go on

Has Nature prepared
a "pleasant" welcome to
the TeV-scale
(striking signals with
limited luminosity
and non-ultimate detector
performance) or shall
we have to sweat
through years of data
taking and hard work before
we can claim a discovery?

Early determination of scale of New Physics would be crucial for planning of future facilities (ILC? CLIC? Underground Dark Matter searches?)
The future of our discipline will benefit from a quick feedback on SUSY and the rest ..!

Next challenge: efficient and as-fast-as-possible commissioning of machine and detectors of unprecedented complexity, technology and performance

From E. Fermi, preparatory notes for a talk on "What can we learn with High Energy Accelerators?" given to the American Physical Society, NY, Jan. 29th 1954

F. Gianotti, Lepton-Photon 2005

Many thanks to:

C. Collard, A. De Roeck, B. Gjelsten, K. Moening, L. Pape, G. Polesello, W. Porod, D. Tovey