
Physics opportunities at the LHC with an improved luminosity

HIF2004, Isola d'Elba, 6/6/2004 Fabiola Gianotti (CERN)

- Motivations
- Environment, detector upgrades (machine: see talk by W. Scandale)
- Some examples of physics potential (and comparisons with other machines ...)

 $H \rightarrow ee\mu\mu$ event in CMS at 10^{35} cm⁻²s⁻¹

Time scale:

- -- first LHC collisions: summer 2007
- -- reach 10^{34} cm⁻² s⁻¹ in ~ 2010?
- -- luminosity upgrade to 10^{35} cm⁻² s⁻¹ around 2015?

Motivations for a luminosity upgrade of the LHC ("SLHC =Super-LHC")

Precise physics case depends on what the LHC will find, but in general:

- · SLHC can extend the LHC mass reach by ~ 30%
 - --> increase/consolidate LHC discovery potential at the (compelling) TeV-scale
- Can improve on precision measurements: parameter determination of e.g. Higgs and New Physics if discovered
- · Higher sensitivity to rare processes

Maximum exploitation of existing tunnel, machine, detectors ...

Note:

- -- SLHC is not a new machine → physics and cost not comparable to LC, CLIC, MC, VLHC ...
- -- energy upgrade to $\sqrt{s} \sim 28$ TeV also considered: requires new machine with ~ 16 T magnets \rightarrow only L upgrade discussed here (but some comparisons with $\sqrt{s} = 28$ TeV made)

The environment and the main experimental challenges

	LHC	SLHC
$\begin{array}{c} \sqrt{s} \\ \text{Luminosity} \\ \text{Bunch spacing } \Delta t \\ \sigma_{pp} \text{ (inelastic)} \\ \text{N. interactions/x-ing} \\ \text{(N=L } \sigma_{pp} \Delta t \text{)} \\ \text{dN}_{ch}/\text{d}\eta \text{ per x-ing} \\ $	14 TeV 10 ³⁴ 25 ns ~ 80 mb ~ 20 ~ 150 ~ 450 MeV 1 1	14 TeV 10 ³⁵ 12.5 ns * ~ 80 mb ~ 100 ~ 750 ~ 450 MeV 10 ~3 10

Normalized to LHC values assuming same detector granularity and integration time

* Presently under study:

- -- 12.5 ns ok for experiments, bad for machine (e-cloud)
- -- 300 m super-bunch good for machine, bad for experiments (pile-up ~ 20 larger than at LHC)
- -- continuous beam may be the solution ...

• <u>Trackers</u>: need to be replaced (radiation, occupancy, response time)

- -- R > 60 cm : development of present Si strip technology ~ ok
- -- 20 < R < 60 cm : development of present Pixel technology ~ ok
- -- R < 20 cm : fundamental R & D required (materials, concept, etc.)
- -- channel number ~ 5 larger (occupancy) → R&D needed for low cost
- <u>Calorimeters</u>: mostly ok
 - -- ATLAS : space-charge problems in LAr fwd calorimeter?
 - -- CMS: -- radiation resistance of end-cap crystals and electronics?
 - -- change scintillator or technique in hadronic end-cap
 - -- plastic-clad \rightarrow quartz-clad quartz fibers in fwd calorimeter
- Muon spectrometers: mostly ok
 - -- increase forward shielding \rightarrow acceptance reduced to $|\eta| < 2$
- -- space charge effects, aging?
- -- some trigger chambers (e.g. ATLAS TGC) too slow if bunch-crossing is 12.5 ns
- <u>Electronics and trigger</u>: large part to be replaced
 - -- new LVL1 trigger electronics (80 MHz) if bunch-crossing is 12.5 ns
 - -- R&D needed for e.g. tracker electronics (fast, rad hard)
 - -- most calorimeter and muon electronics ~ ok (radiation resistance?)

Modest upgrades of ATLAS, CMS needed for channels with hard jets, μ , large E_T^{miss} Major upgrades (new trackers ..) for full benefit of higher L: e[±] ID, b-tag, τ-tag

Preliminary/conservative (no optimization of algorithms for 10^{35})

Jet E-resolution $\eta = 0$

E _⊤ (GeV)	10 ³⁴	10 ³⁵
50	15%	40%
300	5%	8%
1000	3.5%	4%

u-jet rejection factor for ε (b)=50%

p _T (GeV)	1034	10 ³⁵
30-45	35	4
60-100	190	30
100-200	300	115
200-350	90	40

assuming same 2-track resolution at 10³⁵ and 10³⁴

e/jet separation $E_T = 40 \, GeV$

L (cm ⁻² s ⁻¹)	Electron efficiency	Jet rejection
10 ³⁴	81%	10600 ± 2200
10 ³⁵	78%	6800 ± 1130

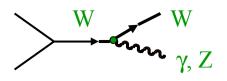
deterioration smaller at higher E

Physics potential of the SLHC a few examples ...

- Standard Model: multiple Gauge Bosons, top rare decays, ...
- · Higgs: rare decays, couplings, self-couplings, heavy Higgs MSSM, ...
- · Beyond SM: strong EWSB, SUSY, Z', compositeness,

Detector performance, pile-up included
All results are preliminary

More details here


CERN-TH/2002-078 hep-ph/0204087 April 1, 2002

PHYSICS POTENTIAL AND EXPERIMENTAL CHALLENGES OF THE LHC LUMINOSITY UPGRADE

Conveners: F. Gianotti ¹, M.L. Mangano ², T. Virdee ^{1,3}
Contributors: S. Abdullin ⁴, G. Azuelos ⁵, A. Ball ¹, D. Barberis ⁶, A. Belyaev ⁷, P. Bloch ¹, M. Bosman ⁸, L. Casagrande ¹, D. Cavalli ⁹, P. Chumney ¹⁰, S. Cittolin ¹, S.Dasu ¹⁰, A. De Roeck ¹, N. Ellis ¹, P. Farthouat ¹, D. Fournier ¹¹, J.-B. Hansen ¹, I. Hinchliffe ¹², M. Hohlfeld ¹³, M. Huhtinen ¹, K. Jakobs ¹³, C. Joram ¹, F. Mazzucato ¹⁴, G.Mikenberg ¹⁵, A. Miagkov ¹⁶, M. Moretti ¹⁷, S. Moretti ^{2,18}, T. Niinikoski ¹, A. Nikitenko^{3,†}, A. Nisati ¹⁹, F. Paige ²⁰, S. Palestini ¹, C.G. Papadopoulos ²¹, F. Piccinini ^{2,‡}, R. Pittau ²², G. Polesello ²³, E. Richter-Was ²⁴, P. Sharp ¹, S.R. Slabospitsky ¹⁶, W.H. Smith ¹⁰, S. Stapnes ²⁵, G. Tonelli ²⁶, E. Tsesmelis ¹, Z. Usubov ^{27,28}, L. Vacavant ¹², J. van der Bij ²⁹, A. Watson ³⁰, M. Wielers ³¹

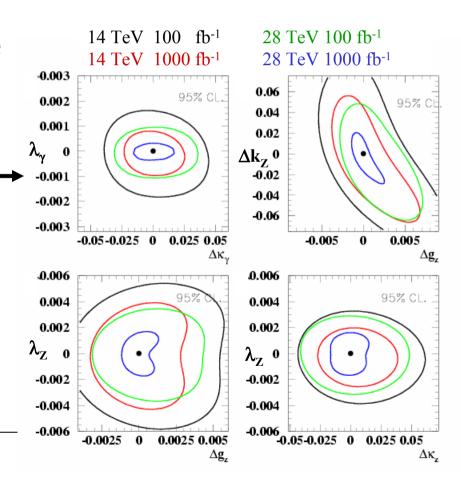
Assumption : \(\int \text{dt} = 1000 \text{ fb}^{-1} \text{ per experiment per year of running} \)

Triple Gauge Bosons

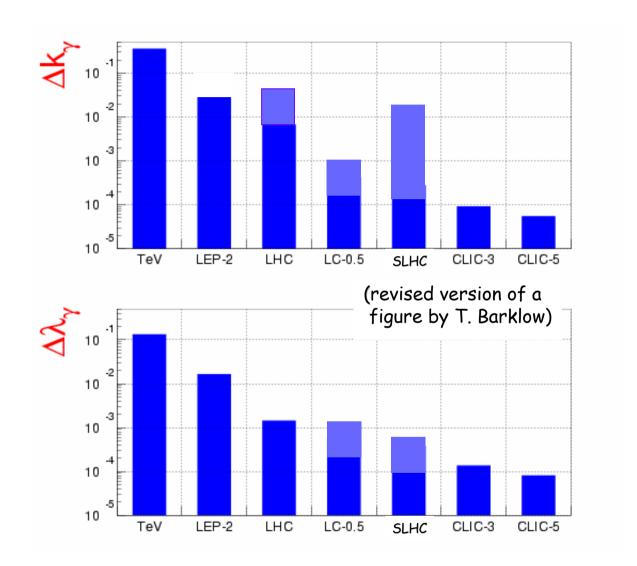
Probe non-Abelian structure of SU (2) and sensitive to New Physics

$$\begin{array}{lll} \lambda_{\gamma}, \; \Delta k_{\gamma} & \text{from} & W \; \gamma \rightarrow l \nu \gamma \\ \lambda_{Z} \; , \; \Delta k_{Z} \; , \; g^{1}_{Z} & \text{from} & W \; Z \rightarrow l \nu \; ll \end{array} \right\} \; 1 = e, \, \mu \qquad 10^{34} \\ 1 = \mu \qquad 10^{35} \; \text{(to be conservative ..)}$$

 λ -couplings increase as \sim s

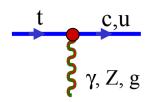

 \rightarrow constrained by σ_{tot} , high-p_T tails

k-couplings: softer energy dependence


→ constrained mainly by angular distributions

95% C.L. constraints for 1 experiment from fits to σ_{tot} , p_T^{γ} , p_T^{Z}

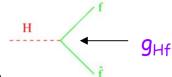
- SLHC sensitivity at the level of SM radiative corrections
- Angular distributions not used--> pessimistic for k-couplings
- only high- p_T muons and photons used (assuming trackers not replaced)



Comparison with other machines

Anomalous contributions depend on scale of New Physics $\Lambda \to$ no limit to desired precision

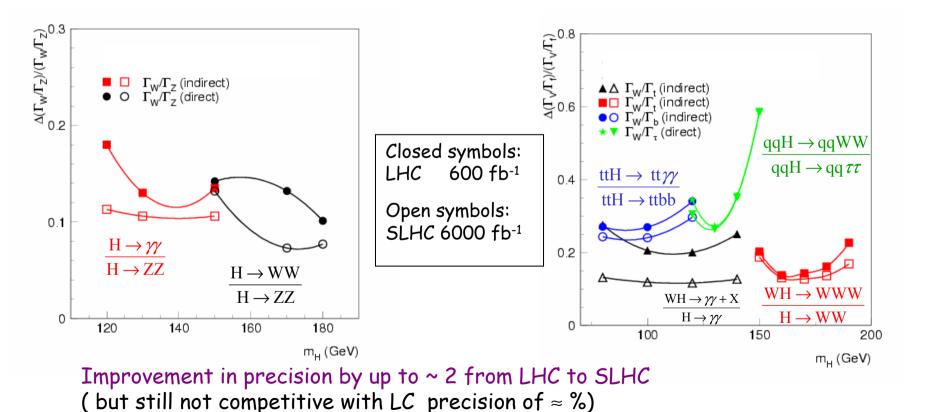
FCNC top decays at SLHC


- Most measurements (e.g. $\Delta m_{top} \sim 1$ GeV) limited by systematics \rightarrow ~ no improvement at SLHC
- Exception : FCNC decays Some theories beyond SM (e.g. some SUSY models, 2HDM) predict BR $\approx 10^{-5}$ 10^{-6} , which are at the limit of the LHC sensitivity
- Expected limits from Tevatron Run II in 2007: BR < 10⁻³

99% C.L. sensitivity to FCNC BR (units are 10⁻⁵)

Channel	LHC (600 fb ⁻¹)	SLHC (6000 fb ⁻¹)	
$ \begin{array}{c} \uparrow \to q\gamma \\ \uparrow \to qg \\ \uparrow \to qZ \end{array} $	0.9 61 1.1	0.25 19 0.1 ←	requires b-tagging performance at SLHC similar to that at LHC

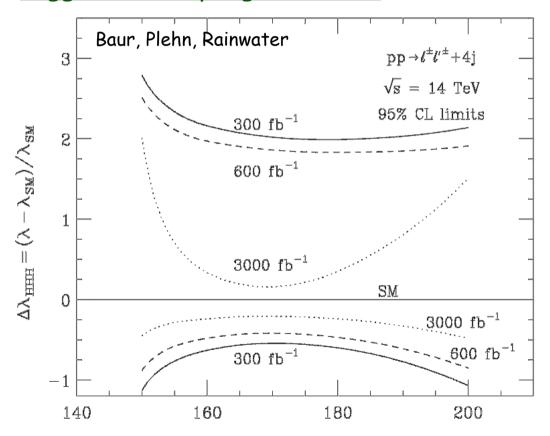
LC: worse reach (~ 300 000 tt pairs/year \sqrt{s} = 0.4 TeV compared to 109 pairs/year at SLHC)

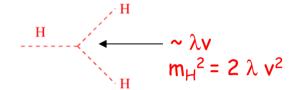

Higgs couplings to fermions and bosons

Can be obtained from measured rate in a given production channel:

$$R_{\rm ff} = \int L \, dt \bullet \sigma \, (e^+ e^-, pp \to H + X) \bullet BR \, (H \to ff) \qquad BR \, (H \to ff) = \frac{\Gamma_f}{\Gamma_{tot}} \qquad \to \text{ deduce } \quad \Gamma_f \sim g^2_{Hff}$$

- LC : Γ_{tot} and σ ($e^+e^- \rightarrow H+X$) from data
- LHC : Γ_{tot} and σ (pp \to H+X) from theory \to without theory inputs measure ratios of rates in various channels (Γ_{tot} and σ cancel) \to $\Gamma_{\text{f}}/\Gamma_{\text{f}'}$


Rare Higgs decays at SLHC

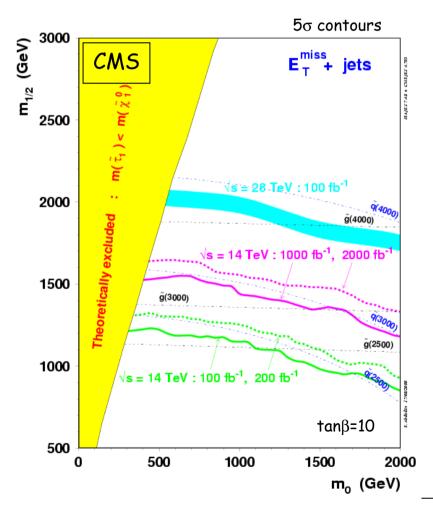

Channel	m _H	S/√B LHC (600 fb-1)	S/√B SLHC (6000 fb-1)
$\begin{array}{c} H \rightarrow Z\gamma \rightarrow H \gamma \\ H \rightarrow \mu\mu \end{array}$	~ 140 GeV	~ 3.5	~ 11
	130 GeV	~ 3.5 (gg+VBF)	~ 7 (gg)

BR $\sim 10^{-4}$ both channels

additional coupling measurements : e.g. $\Gamma_{\rm u}$ / $\Gamma_{\rm W}$ to ~ 20%

Higgs self-couplings at SLHC?

 $HH \rightarrow W^+ \ W^- \ W^+ \ W^- \rightarrow I^{\pm} v \ jj \ I^{\pm} v \ jj$


LHC: λ = 0 may be excluded at 95% CL.

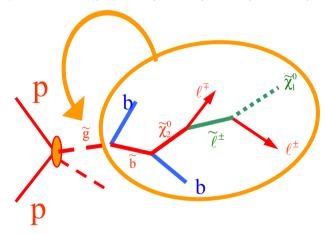
SLHC: λ may be determined to 20-30% (95% CL)

Comparable to \sqrt{s} = 0.5 TeV LC , not competitive with CLIC (precision up to 7%)

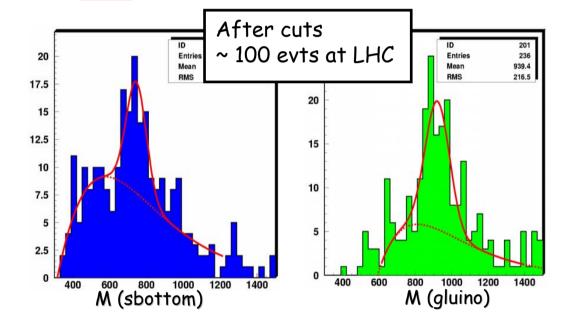
Supersymmetry

- If SUSY connected to hierarchy problem, some sparticles should be observed at LHC
- However: no rigorous upper bound $\to q_{\widetilde{q}}$ may be at limit of sensitivity e.g. inverted hierarchy models: $m(\widetilde{q})$ up to several TeV for first two generations
- Expected limits from Tevatron Run II in 2007 : $m(\widetilde{q}), m(\widetilde{g}) > 400 \text{ GeV}$

 5σ discovery reach on $m(\widetilde{q}), m(\widetilde{g})$

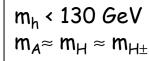

```
LHC \approx 2.5 TeV \lesssim SLHC \approx 3 TeV \lesssim = 28 TeV, 10^{34} \approx 4 TeV \lesssim = 28 TeV, 10^{35} \approx 4.5 TeV
```

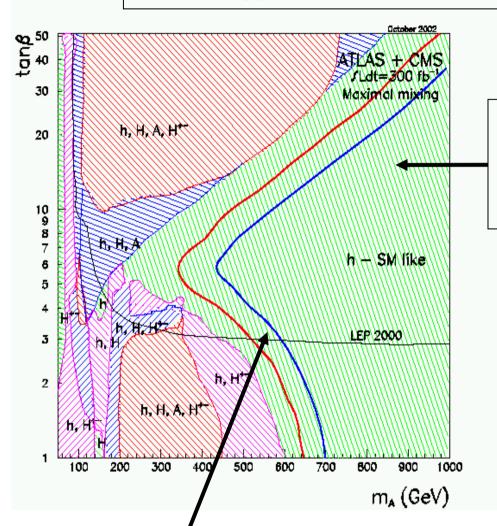
- -- No major detector upgrade needed for $\frac{\text{discovery}}{\text{discovery}}$: $\frac{\text{inclusive signatures}}{\text{with high } p_T \text{ calorimetric objects}}$
- -- Fully functional detectors (b-tag, etc.) needed for <u>precision measurements</u> based on <u>exclusive chains</u>


Example of rate-limited (at standard LHC) mass reconstruction

Proposed Post-LEP Benchmarks for Supersymmetry (hep-ph/0106204)

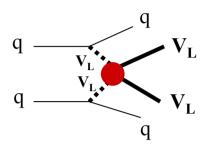
Model	A	В	С	D	E	F	G	Н	I	J	K	m L	M
$m_{1/2}$	600	250	400	525	300	1000	375	1500	350	750	1150	450	1900
m_0	140	100	90	125	1500	3450	120	419	180	300	1000	350	1500
aneta	5	10	10	10	10	10	20	20	35	35	35	50	50
$sign(\mu)$	+	+	+	_	+	+	+	+	+	+	_	+	+
$\mid lpha_s(m_Z) \mid$	120	123	121	121	123	120	122	117	122	119	117	121	116
m_t	175	175	175	175	171	171	175	175	175	175	175	175	175




Precise reconstruction of sbottom (m = 770 GeV) and gluino (m = 920 GeV) would benefit from more statistics

Linear Colliders are best machines to complement (5)LHC (especially if running concurrently): observation and precise measurements (\leq %) of \sim all sparticles with m $<\sqrt{s}$ /2

In the green region only SM-like h observable at LHC (300 fb⁻¹/exp), unless A, H, H $^\pm$ \rightarrow SUSY particles \rightarrow LHC can miss part of MSSM Higgs sector


For m_A < 600 GeV, TESLA can demonstrate indirectly (i.e. through precision measurements of h properties)
SUSY-type Higgs sector at 95%C.L.
--> this region is ~ fully covered at SLHC

Red and blue lines: SLHC extensions for 3000 fb-1/exp.

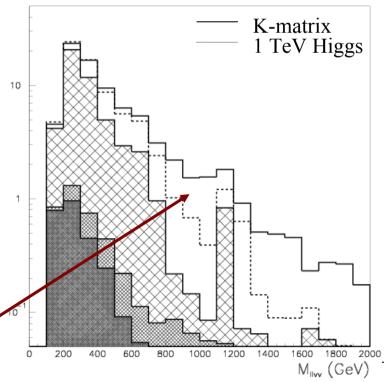
Regions where ≥ 1 heavy Higgs can be discovered at 5σ or excluded at 95% C.L. at SLHC

Strong V_LV_L scattering

If no Higgs, expect strong $V_L V_L$ scattering (resonant or non-resonant) at $\sqrt{\hat{s}} \approx {\rm TeV}$

Forward jet tag ($|\eta|$ >2) and central jet veto essential tools against background

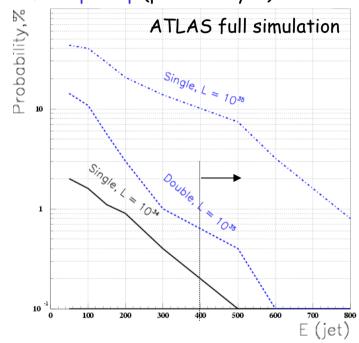
LHC

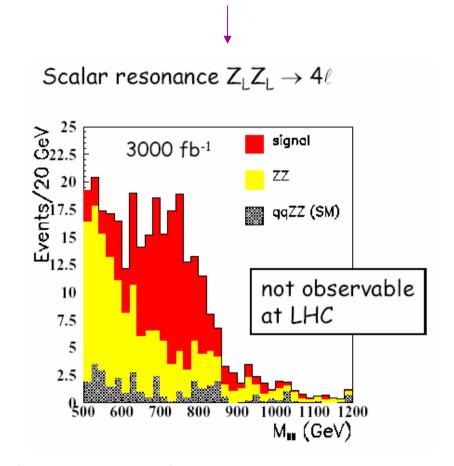

: difficult ...

Best non-resonant channel is $W^+_L \ W^+_L \to W^+_L \ W^+_L \to \ I^+\nu \ I^+\nu$

- -- Expected potential depends on exact model
- -- Lot of data needed to extract signal (if at all possible ...)

2-30 excess, 5 and B have similar shapes


ATLAS, 14 TeV, 300 fb-1



- -- degradation of fwd jet tag and central jet veto due to huge pile-up
- -- however: factor ~ 10 in statistics \rightarrow 5-8 σ excess in $W_L^+W_L^+$ scattering \rightarrow other low-rate channels accessible

Fake fwd jet tag ($|\eta| > 2$) probability from pile-up (preliminary ...)

Study of several channels (W_LW_L , Z_LZ_L , W_LZ_L) may be possible at SLHC \rightarrow insight into the underlying dynamics (detailed study may require LC with $\sqrt{s} \ge 1$ TeV)

1034

From: "Report of High Luminosity Study Group to the CERN Long-Range Planning Committee", CERN 88-02, 1988.

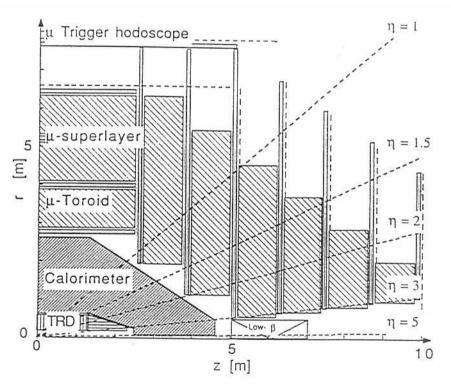
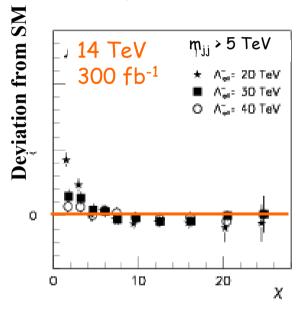



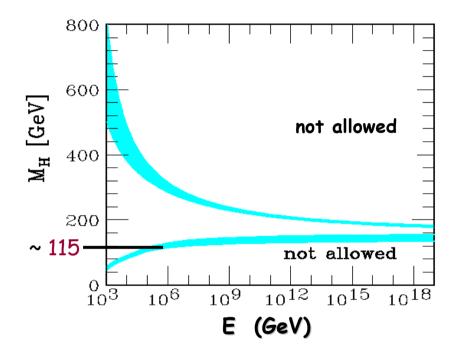
Figure 1. Conceptual design of 'non-magnetic' detector system. Calorimeter coverage for $3 < |\eta| \le 5$ is not essential for luminosity $> 10^{33} \text{cm}^{-2} \text{s}^{-1}$.

Quark compositeness

$$L_{\text{CI}} = \sum_{i,j=L,R} \eta_{ij} \frac{g^2}{\Lambda^2_{ij}} (\overline{e}_i \gamma^{\mu} e_i) (\overline{f}_j \gamma^{\mu} f_j)$$

Quark sub-structure at a scale $\sqrt{\hat{s}} << \Lambda$ \rightarrow contact interactions $qq \rightarrow qq$ \rightarrow modify di-jet angular distributions \rightarrow expect excess of high- E_T central jets

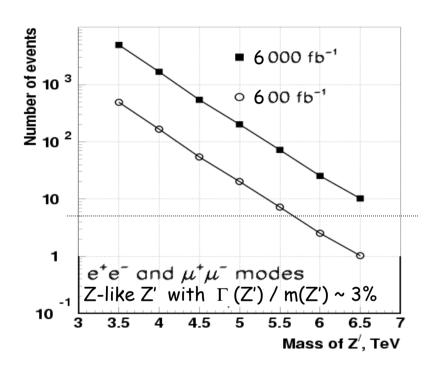
If b-tagging available can measure jet flavour


$$\chi = \frac{1 + |\cos \theta^*|}{1 - |\cos \theta^*|}$$
 if contact interactions \rightarrow excess at low χ

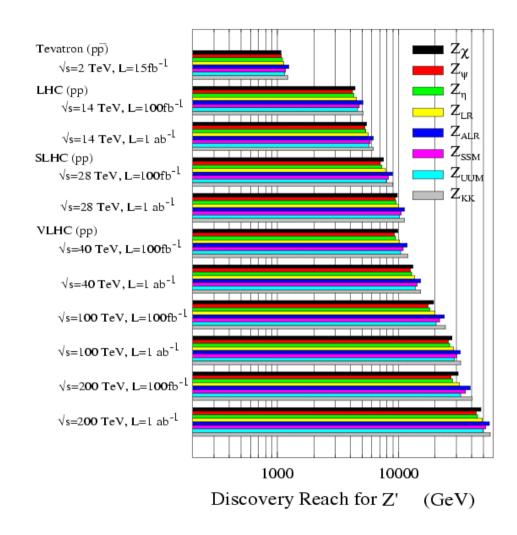
95% C.L. lower limits on Λ (TeV)

14 TeV	14 TeV	28 TeV	28 TeV
300 fb ⁻¹	3000 fb ⁻¹	300 fb ⁻¹	3000 fb ⁻¹
40	60	60	85

LC: sensitive to IIqq, IIII (complementary) up to \approx 100-1000 TeV (\sqrt{s} =0.8-5 TeV)


If $m_H \sim 115~\text{GeV} \to \text{New Physics}$ at E < $10^5\text{-}10^6~\text{GeV}$ \to (S)LHC can probe (directly or indirectly) a large part of this range

CLIC with \sqrt{s} = 5 TeV : probes indirectly up to 10⁶ GeV with ultimate luminosity VLHC with \sqrt{s} = 200 TeV : probes directly up to 10⁵ GeV with ultimate luminosity


Additional gauge bosons: Z'

SLHC: direct discovery reach up to ~ 7 TeV mass can be measured to ≤ %

CLIC:

- direct discovery reach up to 3-5 TeV
- mass and width can be measured to 10^{-3} 10^{-4} from resonance scan
- indirect reach from precise (~ %) EW measurements up to ~ 40 TeV

abiola Olahotti, Till 200 i, 130la a Ciba, 0/0/200 i

Summary of reach and comparison of various machines ...

Only a few examples in many cases numbers are just indications

Units are TeV (except W_LW_L reach)

Ldt correspond to 1 year of running at nominal luminosity for 1 experiment

PROCESS	LHC 14 TeV 100 fb ⁻¹	SLHC 14 TeV 1000 fb ⁻¹	28 TeV 100 fb ⁻¹	VLHC 40 TeV 100 fb ⁻¹	VLHC 200 TeV 100 fb ⁻¹	LC 0.8 TeV 500 fb ⁻¹	CLIC 5 TeV 1000 fb ⁻¹
Squarks	2.5	3	4	5	20	0.4	2.5
W_LW_L	2σ	4σ	4.5σ	7σ	18σ	6σ	90σ
Z'	5	6	8	11	35	8 †	30 [†]
Extra-dim (δ =2)	9	12	15	25	65	5-8.5 [†]	30-55 [†]
q*	6.5	7.5	9.5	13	75	0.8	5
Λ compositeness	30	40	40	50	100	100	400
Τ <i>GC</i> λ, (95%)	0.0014	0.0006	0.0008		0.0003	0.0004	0.00008

† indirect reach (from precision measurements)

```
Approximate direct mass reach:
```

 \sqrt{s} = 14 TeV, L=10³⁴ (LHC) : up to ≈ 6.5 TeV \sqrt{s} = 14 TeV, L=10³⁵ (SLHC) : up to ≈ 8 TeV \sqrt{s} = 28 TeV, L=10³⁴ : up to ≈ 10 TeV \sqrt{s} = 28 TeV, L=10³⁵ : up to ≈ 11 TeV

Fabiola Gianotti, HIF2004, Isola d'Elba, 6/6/2004

CONCLUSIONS

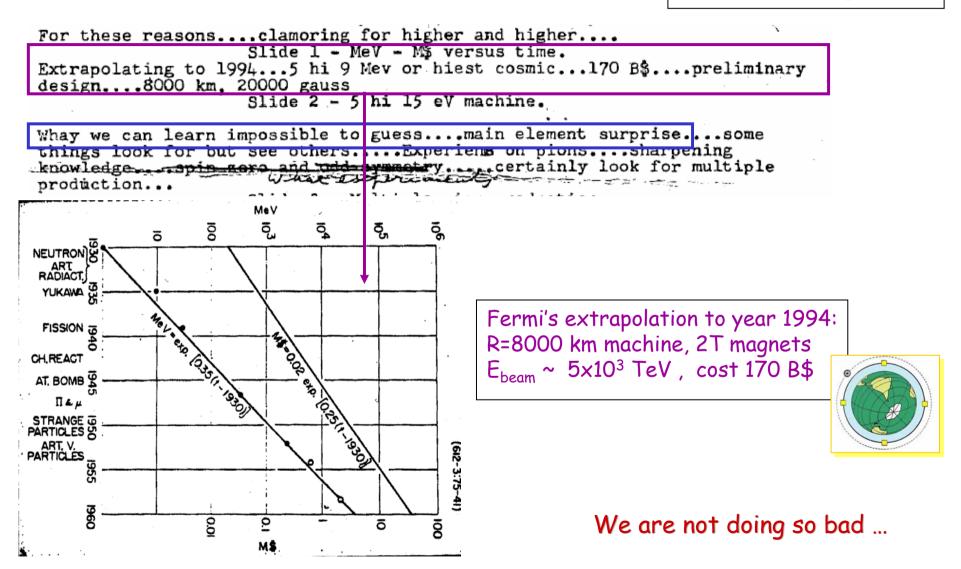
- LHC, although powerful, will not be able to answer all questions and new high energy/luminosity machine(s) will most likely be needed.
 E.g. LHC can discover SUSY but full understanding of new theory requires a complementary machine
- Because we ignore what happens at the TeV scale (although EW data favour a light Higgs and weak EWSB), and in the absence of theoretical preference for a specific energy scale beyond the TeV region, it is not easy to make a choice before LHC data will become available.

- LHC luminosity upgrade to 10^{35} cm⁻² s⁻¹ :
 - -- consolidation/extension of LHC (discovery) programme
 - -- maximum exploitation of existing tunnel, machine, detectors
 - -- "combined studies" if any time overlap with a sub-TeV LC

Not in competition with new machines.
Good physics return for "modest" cost?

- LHC energy upgrade to \sqrt{s} ~ 28 TeV :
 - -- larger physics potential than SLHC
 - -- easier to exploit experimentally if L=10³⁴
 - -- new machine (feasibility, cost?)

Benefit/cost ratio should be better understood (e.g. if clear physics case from LHC data ...), also against other machines


Examples of possible post-LHC scenarii and options (speculative ...)

Note: here $LC \equiv Lepton Collider$

```
(5)LHC finds SUSY (Higgs, squarks, gluino, and some gauginos and sleptons)
 \rightarrow (multi)-TeV LC to complete spectrum?
(5)LHC finds SUSY (Higgs, gluino, stop, some gauginos) but no squarks of first generations
\rightarrow 28 TeV (or VLHC) and multi-TeV LC could be equally useful and complementary?
LHC finds only one SM-like Higgs and nothing else
\rightarrow (multi)-TeV LC to study Higgs properties and get clues of next E-scale up to 10<sup>6</sup> GeV?
(S)LHC finds contact interactions \rightarrow \Lambda < 60 TeV
\rightarrow 28 TeV machine or VLHC to probe directly scale \Lambda ?
(S)LHC finds Extra-dimensions \rightarrow M_D < 15 \text{ TeV}
\rightarrow 28 TeV machine or VLHC to probe directly scale M<sub>D</sub>?
LHC finds nothing \rightarrow Higgs strongly interacting ?
 → multi-TeV LC to look for new (strong) dynamics and get hints of next E-scale?
LHC finds less conventional scenarii or totally unexpected physics \rightarrow
```

From E. Fermi, preparatory notes for a talk on "What can we learn with High Energy Accelerators?" given to the American Physical Society, NY, Jan. 29th 1954

University of Chicago Library

Back-up slides

 $L = 10^{35}$ upgrade

VS

 \sqrt{s} ~ 28 TeV upgrade

Modest changes to detectors
Larger physics potential: mass reach ~1.5 higher than LHC many improved measurements (e.g. Higgs) higher statistics than LHC LHC-like environment

If both : $\sqrt{s} \sim 28$ TeV + L = 10^{35} : LHC mass reach extended by ~ 2

$L = 10^{35}$: experimental challenges and detector upgrades

- If bunch crossing 12.5 ns → LVL1 trigger (BCID) must work at tracker (occupancy) 80 MHz
- ~ 120 minimum-bias per crossing (compared to ~ 25 at LHC)
- occupancy in tracker ~ 10 times larger than at LHC (for same granularity and response time)
- pile-up noise in calorimeters ~ 3 times larger (for same response time)
- radiation : $--500 \text{ fb}^{-1} = \sim 10 \text{ years at LHC}$ $--3000 \text{ fb}^{-1} = \sim 3 \text{ years at SLHC}$

CMS tracker

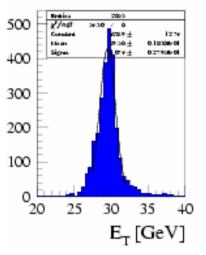
R (cm)	hadron fluence 10 ¹⁴ cm ⁻²	Dose (kGy)
4	30/190	840/5000
11	5/28	190/1130
22	1.5/10	70/420
75	0.3/2	7/40
115	0.2/1	2/11

CMS calorimeters

η	ECAL dose (kGy)	HCAL dose (kGy)
0-1.5 2.0 2.9 3.5 5	3/18 20/120 200/1200	0.2/1 4/25 40/250 100/600 1000/6000

1 Gy = 1 Joule/Kq

Examples of (ATLAS) performance at 10³⁵


Full Geant simulation No optimisation done

• EM calorimeter energy resolution:

$$e^{\pm}$$
 E_T = 30 GeV

$$\frac{\sigma}{E} \approx 2.5 \%$$
 at 10^{34} $\frac{\sigma}{E} \approx 3.6 \%$ at 10^{35}

- deterioration smaller at higher E ($\sigma_{\rm pile-up}$ ~ 1/E) pessimistic : optimal filtering could help

e/jet separation:

$$E_T$$
 = 40 GeV

L (cm ⁻² s ⁻¹)	Electron efficiency	Jet rejection
10 ³⁴	81%	10600 ± 2200
10 ³⁵	78%	6800 ± 1130

deterioration smaller at higher E

b-tagging:

p _⊤ (GeV)	10 ³⁴	10 ³⁵
30-45 60-100	33 190	3.7 27
100-200	300	113
200-350	90	42

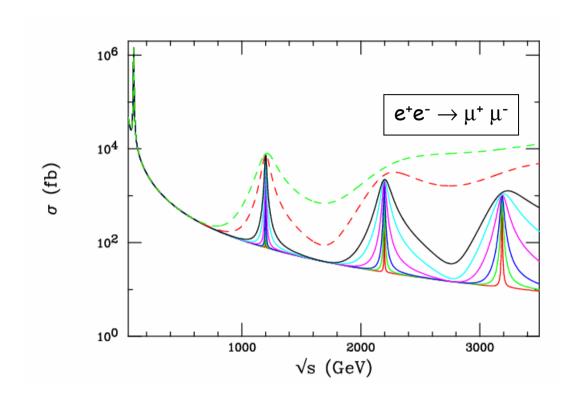
Rejection against u- jets for 50% b-tagging efficiency assuming same 2-track resolution at 10^{35} as at 10^{34}

v Factory and Muon Collider: a 3-step project

excellent physics potential at each step!

v factory:

- -- Superconducting Proton Linac (SPL): high-intensity p source (10¹⁶ p/s, 2.2 GeV) using LEP RF cavities. Useful also for LHC, ISOLDE, CNGS (Conceptual Design Rep. ready)
- -- μ collection, cooling, acceleration to ~ 50 GeV, decay $\rightarrow \nu$ storage ring
- -- high-intensity and well-understood (flux, spectrum) v_e and v_μ beams for oscillation/mixing matrix studies
- **2** Higgs factory : $\mu^+ \mu^- \rightarrow H$
 - -- \sqrt{s} ≈ 115 \rightarrow 1000 GeV
 - -- better potential than e⁺e⁻ LC of same \sqrt{s} : smaller E-beam spread (~10⁻⁵), better E-beam calibration (to ~10⁻⁷ from e[±] spectrum from polarised μ^{\pm} decays), σ ($\mu^{+}\mu^{-} \rightarrow H$) ~ 40000 σ (e⁺e⁻ $\rightarrow H$)
 - e.g. $\Delta m_W \approx 7$ MeV, $\Delta m_{top} \approx MeV$, H lineshape ($\Delta m_H \approx 0.1$ MeV, $\Delta \Gamma_H \approx 0.5$ MeV at 115 GeV)

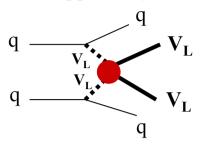

High-E Muon Collider:

- -- $\sqrt{s} \le 4$ TeV (v-radiation ~ E)
- -- better potential than e⁺e⁻ LC of same \sqrt{s} (see above), but no $\gamma\mu$, $\gamma\gamma$ options
- -- smaller E-beam spread but v radiation \rightarrow detector background

Fundamental questions to be solved for 2 and 3:

 μ cooling (fast ionisation cooling ?) and acceleration (re-circulating LINAC)

longer
time-scale
than CLIC



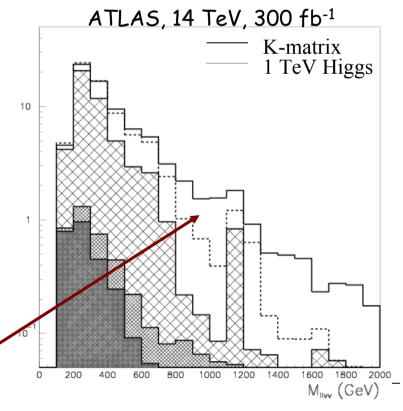
CLIC is resonance factory up to kinematic limit.

Precise determination of mass, width, cross-section (from resonance scan `a la LEP1), branching ratios, spin ...

Strong V_LV_L scattering

If no Higgs, expect strong $V_L V_L$ scattering (resonant or non-resonant) at $\sqrt{\hat{s}} \approx {\rm TeV}$

Forward jet tag ($|\eta|$ >2) and central jet veto essential tools against background


LHC

: difficult ...

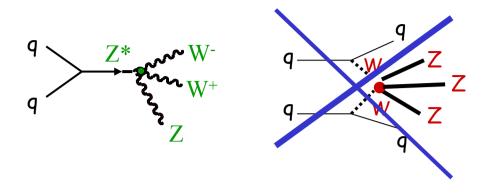
Best non-resonant channel is W+_L W+_L \rightarrow W+_L \rightarrow V+_V ℓ +v

- -- Expected potential depends on exact model
- -- Lot of data needed to extract signal (if at all possible ...)

2-3 σ excess, , S and B have similar shapes

From preliminary feasibility studies:

- L upgrade to 10³⁵:
 - -- increase bunch intensity to beam-beam limit \rightarrow L ~ 2.5 x 10^{34}
 - -- halve bunch spacing to 12.5 ns (new RF)
 - -- change inner quadrupole triplets at IP1 , IP5
 - \rightarrow halve β^* to 0.25 m

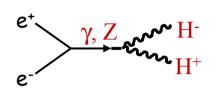

Other options: upgrade injectors to get more brilliant beams, single 300 m long super-bunch, etc.

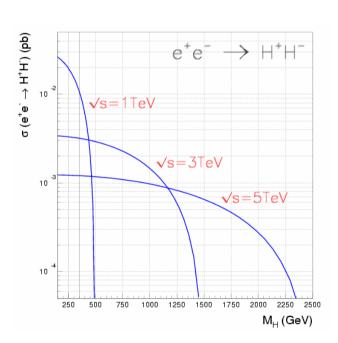
moderate hardware changes time scale ≥ 2012 ?

- √s upgrade to 28 TeV :
 - -- ultimate LHC dipole field : B= 9 T $\rightarrow \sqrt{s}$ = 15 TeV
 - → any energy upgrade requires new machine
 - -- present magnet technology up to B ~ 10.5 T small prototype at LBL with B= 14.5 T
 - -- magnets with B~16 T may be reasonable target for operation in ~ 2015 provided intense R&D on e.g. high-temperature superconductors (e.g. Nb_3Sn)

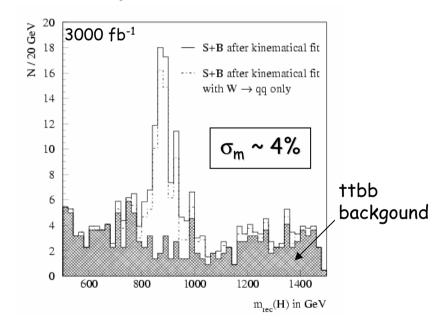
major hardware changes time scale ≥ 2015 ?

Multiple gauge boson production at SLHC


- Probe ≥ quartic anomalous couplings (e.g. 5-ple vertex = 0 in SM)
 - Rate limited at LHC


Process	Expected events after cuts 6000 fb ⁻¹	$\left\{egin{array}{l} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} eta & egin{array}{c} \ell & egin{array}{c} \ell & egin{array}{c} \ell & egin{array}{c} \mu \end{array} \end{array} ight.$
WWW WWZ ZZW	2600 • 1100 36	LHC sensitive to some 4-ple vertices
ZZZ WWWW WWWZ	7 5 0.8	SLHC may be sensitive to 5-ple vertex

Not yet studied at CLIC ...


CLIC: sensitive to m (A, H, H^{\pm}) up to ≈ 1 TeV

e.g. H+H- production

 $H^{\pm} \rightarrow tb \rightarrow Wbb \rightarrow jjbb$ $\rightarrow 8$ jets final state

 \rightarrow full MSSM Higgs spectrum should be observed

Strong $V_L V_L$ scattering at CLIC

Observation of strong EWSB not granted at LHC, SLHC:

-- only fully leptonic final states accessible \rightarrow tiny rates

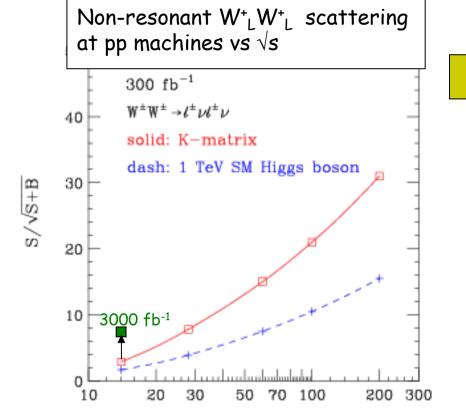
-- non-resonant W_LW_L : same shapes for signal and background

-- relies on fwd jet tag and jet veto performance \rightarrow observation depends on model parameters $W \rightarrow jj$ CLIC:

-- ~ 4000 events/year at production for m = 2 TeV, Γ = 85 GeV

(collimated jets)

 \rightarrow observation of resonant and non-resonant scattering up to ~ 2.5 TeV in several models

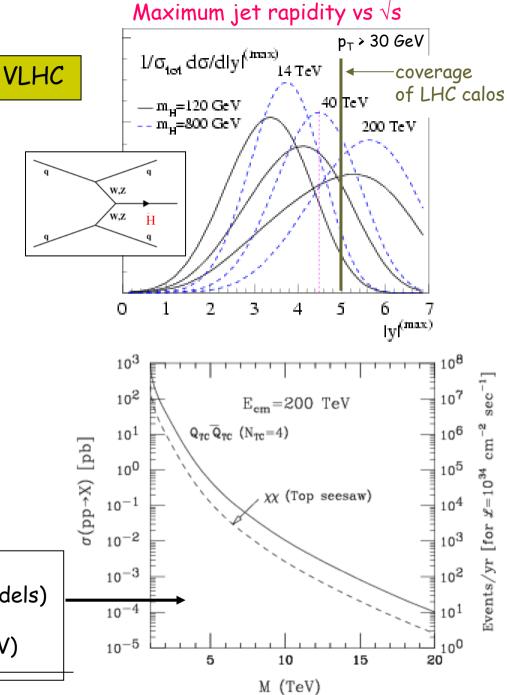

E.g. expected significance for non-resonant $W_LW_L \to W_LW_L$: LHC (300 fb⁻¹) ~ 5 σ SLHC (3000 fb⁻¹) ~ 13 σ K-matrix unitarization model

SLHC (3000 fb⁻¹) ~ 13 σ CLIC (1000 fb⁻¹) ~ 70 σ K-matrix unitary

-- fully hadronic final states accessible

-- small backgrounds

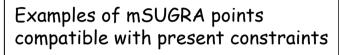
Measurement of resonance parameters at CLIC under study (beam polarisation is additional tool) \to strong dynamic should be explored in detail

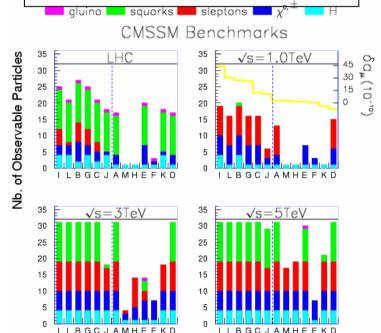


Detailed study of new dynamics also possible at LC with \sqrt{s} > 1 TeV

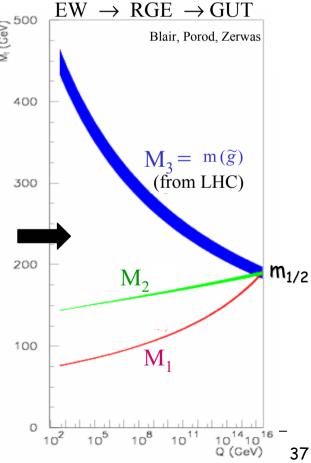
√s (TeV)

However: if strong EWSB involves heavy fermions (e.g. Technicolour, top-seesaw models)

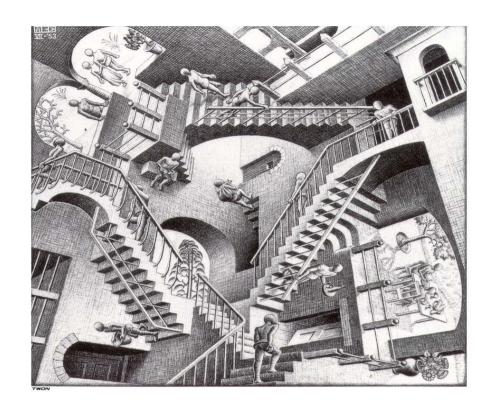

→ only VLHC can observe directly these particles if m >> 1 TeV (up to m ~ 15 TeV)



SUSY at CLIC

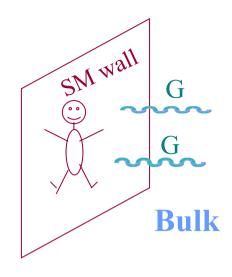

Sensitive to ~ all sparticles up to m ~ 1.5-2.5 TeV

- can complete SUSY spectrum: some sparticles not observable at LHC (small S/B) nor at TESLA (if m > 200-400 GeV)
- precision measurements (e.g. masses to 0.1%, field content) → constrain theory parameters



from precise measurements of e.g. gaugino masses at EW scale reconstruct theory at high E

Extra-dimensions



Several models studied:

ADD (= Arkani-Hamed, Dimopoulos, Dvali): direct production or virtual exchange of a continuous tower of gravitons

RS (= Randall-Sundrum): graviton resonances in the TeV region

 TeV^{-1} scale extra-dimensions : resonances in the TeV region due to excited states of SM gauge fields

Arkani-Hamed, Dimopoulos, Dvali

If gravity propagates in
$$4 + \delta$$
 dimensions, a gravity scale $M_D \approx 1$ TeV is possible

$$V_{4}(r) \sim \frac{1}{M_{Pl}^{2}} \frac{1}{r}$$

$$V_{4+\delta}(r) \sim \frac{1}{M_{D}^{\delta+2}} \frac{1}{R^{\delta}} \frac{1}{r}$$
at large distance

$$M_{\rm Pl}^2 \approx M_{\rm D}^{\delta+2} R^{\delta}$$

• If
$$M_D \approx 1 \text{ TeV}$$
:

$$\delta = 1$$
 R $\approx 10^{13}$ m \rightarrow excluded by macroscopic gravity

$$\delta = 2$$
 R ≈ 0.7 mm \rightarrow limit of small-scale gravity experiments

$$\delta = 7$$
 R ≈ 1 Fm

Extra-dimensions are compactified over R < mm

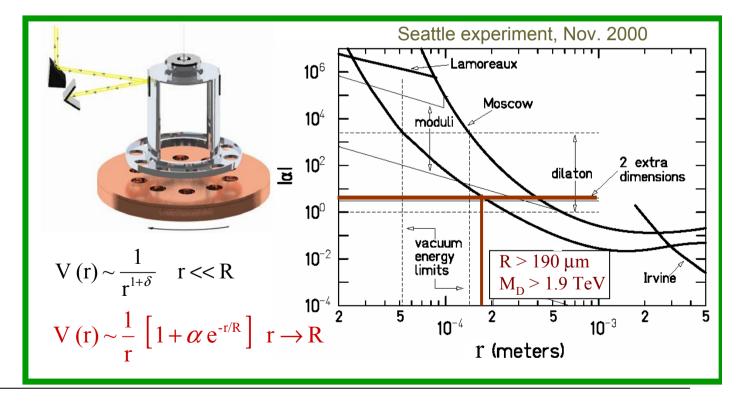
• Gravitons in Extra-dimensions get quantised mass:

$$\begin{array}{ll} m_k \sim \frac{k}{R} & k=1,...\infty \\ \Delta m \sim \frac{1}{R} & \text{e.g.} \ \Delta m \approx 400 \ \text{eV} \ \delta = 3 \end{array} \right\} \begin{array}{ll} \rightarrow \text{ continuous tower} \\ \text{of massive gravitons} \\ \text{(Kaluza - Klein excitations)} \end{array}$$

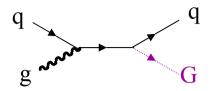
$$\sigma \left[f \right] \approx \frac{1}{M_{\text{Pl}}^{2}} N_{\text{kk}} \approx \frac{1}{M_{\text{Pl}}^{2}} \left(\frac{\sqrt{s}}{\Delta m} \right)^{\delta} \approx \frac{1}{M_{\text{Pl}}^{2}} \sqrt{s}^{\delta} R^{\delta} \approx \frac{\sqrt{s}^{\delta}}{M_{D}^{\delta+2}}$$

Due to the large number of G_{kk} , the coupling SM particles - Gravitons becomes of EW strength

- Only one scale in particle physics : EW scale
- Can test geometry of universe and quantum gravity in the lab


Supernova SN1987A cooling by ν emission (IBM, Superkamiokande) \rightarrow bounds on cooling via G_{kk} emission:

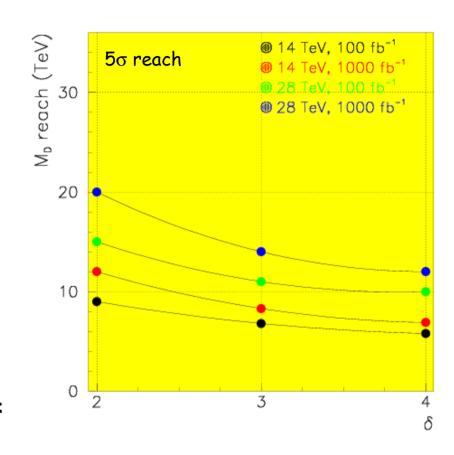
$$M_D > 31 (2.7) \text{ TeV} \quad \delta = 2 (3)$$


Distorsion of cosmic diffuse γ radiation spectrum (COMPTEL) due to $G_{kk} \rightarrow \gamma \gamma$:

$$M_{\rm D} > 100 (5) \text{ TeV} \quad \delta = 2 (3)$$

large uncertainties but $\delta = 2$ disfavoured

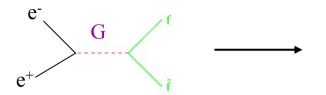
1st example: direct G production in ADD models at LHC/SLHC

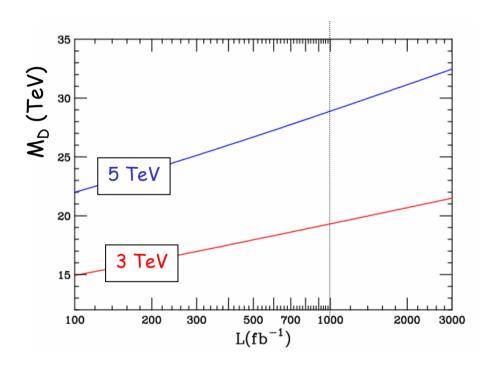


 \rightarrow topology is jet(s) + missing E_T

$$\sigma \approx \frac{1}{M_{\rm D}^{\delta+2}}$$

 M_D = gravity scale δ = number of extra-dimensions


Expected limits (Tevatron, HERA) in 2007: $M_D > 2-3$ TeV for $\delta=3$


SLHC:

- -- no major detector upgrade needed (high- p_T calorimetric objects)
- -- similar reach for virtual G exchange
- -- G and γ/Z resonances observable up to 5-8 TeV

2nd example: virtual G exchange in ADD models at CLIC

expect deviations from SM expectation (e.g. cross-section, asymmetries) precise measurements at high-E machines are very constraining

Indirect sensitivity up to ~ 80 TeV (depending on model) through precision measurements

Possible options for future machines

```
① LHC upgrade: luminosity (L = 10^{35} cm<sup>-2</sup> s<sup>-1</sup>), maybe energy (\sqrt{s} = 28 TeV?)
② TeV-range e<sup>+</sup>e<sup>-</sup> LC (TESLA, NLC, JLC): \sqrt{s} = 0.5 -1.5 TeV, L = 10^{34} cm<sup>-2</sup> s<sup>-1</sup>
③ multi-TeV e<sup>+</sup>e<sup>-</sup> LC (CLIC): \sqrt{s} = 3-5 TeV, L = 10^{35} cm<sup>-2</sup> s<sup>-1</sup>
④ Muon Collider: \sqrt{s} \le 4 TeV, L ~ 10^{34} - 10^{35} cm<sup>-2</sup> s<sup>-1</sup>?
Three steps: v factory, Higgs factory, high-E muon collider
⑤ VLHC: \sqrt{s} = 100-200 TeV, L = 10^{34} - 10^{35} cm<sup>-2</sup> s<sup>-1</sup> (ring ~ 230 km)
```