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The Standard Model of the elementary particles and their interactions

Predicts 3 families of elementary "matter” particles

Matter particles : fermions, spin =1/2
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Note :

MATIERE ATOME NOYAL PROTON -- our world is made
mainly of 15" family ...
-- m(e-) ~0.5 MeV,
m(top)~ 175 GeV !

electrons quarks u,d




These "matter” particles interact via the EM, strong and weak forces.
These forces are transmitted through the exchange of other elementary particles
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Why do we like the Standard Model ?

All the SM predictions (but one ...), in ferms of particles and features of their
interactions, have been verified by many experiments at many machines

1983 : Discovery of W,Z at
CERN pp Collider (\Ns ~ 600 GeV )

m ~ 100 GeV as predicted (UA1,UA2)
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1994 : top quark discovered at
Fermilab pp Collider (Vs ~ 2 TeV )
m ~ 175 GeV (CDF, DO)
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The LEP e+e- Collider at CERN

1989-2000 : s =m, — 209 GeV
Precise measurements of Z particle and of my,, and search for new particles (Higgs !)
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Measurement Pull (O™*_QM)/cmeas
3-2-101 23
m,[GeV] 91.1875+0.0021  .0f
[,[GeV]  24952+0.0023 -42
ol [nb]  41.540+0.037 163
R, 20.767 +0.025  1.05
A7 0.01714 £0.00095 .70
R, 0.21646 + 0.00065 1.06
R, 01719 +0.0031  -11
AP 0.0994 +0.0017  -2.64
Ag° 0.0707 £0.0034 -1.05
A, 0.922 +0.020 -.64
A 0.670 +0.026 06
A(SLD) 01513 +0.0021 150 —
m,, [GeV]  80.451+0.033 173
Iy [GeVl  2.134+0.069 59 r
m, [GeV] 174.3 £ 5.1 -.08

3-2-1012 3

Many spectacular measurements: agreement theory-data at the permil level !




Why we don't like the Standard Model ?

Unable to answer in a satisfactory way to (foo) many questions of fundamental importance ...

1) What is the origin of the particle masses ?

E.g. why m, =0
my z ~ 100 GeV .

SM : Higgs mechanism gives mass to particles

g -~/
I :: my< 1 TeV from theory

However:

-- Higgs not found yet: only missing (and
essential | ) piece of SM
Present limit : m > 114.4 GeV (from LEP)

-- Higgs mass increases (diverges !) with scale A
up to which SM is valid — unphysical

P.W. Higgs, Phys. Lett. 12 (1964) 132

T

Only unambiguous example of
observed Higgs



2) Many other open gquestions
-- Why 3 lepton/quark families ? Why is the first family privileged ?
-- Are there additional (heavy) leptons and bosons ?
-- Are quarks and leptons really elementary ?
-- What is the origin of matter / anti-matter asymmetry in the universe ?
-- Why Mgw/Mpignek ~ 1077 (“hierarchy” problem) ?

-- What is the nature of
the Universe Dark Matter ?

Recent astrophysical measurements
(e.g. WMAP satellite) indicate that QuickTime™ and a
The Uriverse is made of p TEE L8 docompreson
--5% of known matter
-- 25 % of "Dark Matter”
(no SM particle can explain it)
--70% of "Dark Energy"
- today we understand only 5%
of the Universe composition




All this calls for

A more fundamental theory
of which SM is low-E approximation

—

New Physics

Best candidates : Supersymmetry (SUSY)

Extra-dimensions
Technicolour

C——

to solve SM problems,
all predict New Physics

at = TeV scale

== | need a machine to explore the ~ TeV energy range

CERN Large Hadron Collider (LHC)

Borge's thesis is on Supersymmetry at LHC




One of the main indications in favour of SUSY :
unification of coupling constants of EM, weak and strong forces

at high energy scale

ogn = 1/04
oy = 1/0,
os = 1/045
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Large Hadron Collider

pp collisions at Vs= 14 TeV
in 27 km ring

Data taking starts in Summer 2007

LHC, pp, Vs= 14 TeV , L= 1033 cm?2 5!

LHC Previous machines
eventsinlyr | total data samples
Z 107 LEPTI07 in~ 10yrs
W 108 FNAL: 107 in ~7 yrs
top 107 FNAL: 105 in ~7 yrs
1 TeV Susy 104 -—---
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Muon Detectors Electromagnetic Calorimeters

. S Forward C:.alonmeters TI S
2/ AN \ / \ / ~

w7 \ N\ \\ End Cap Toroid

Length : ~46 m

Radius : ~12 m

Weight : ~ 7000 tons
~108 electronic channels
~ 3000 km of cables

Tracking Electromagnetic Hadron Muan
chamber calorimeter  calorimeter chamber

Barrel Toroid Inner Detector Hadronic Calorimeters . Shielding pmm
et
—
] muons

* Tracking (In|<2.5, B=2T): —
-- Si pixels and strips 1%, p

-- Transition Radiation Detector (e/n separation) ’
lori )

L] < :
Ca orimetry (lnl 5) Innermost Layer... P .. Outermost Layer

-- EM : Pb-LAr
-- HAD: Fe/scintillator (central), Cu/W-LAr (fwd)

* Muon Spectrometer (|n[<2.7) :
air-core toroids with muon chambers
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SUPERSYMMETRY (SUSY) = symmetry between fermions (matter) and bosons (forces)

* All SM particles p have SUSY partner 3 with same couplings and quantum numbers

except spin (p) =spin (p) -1/2
SM particle SUSY partner spin Particle spectrum in minimal models
| sleptons 5 0 (MSSM)
q squarks 0
g gluino 1 1/2 +5 Higgs: h, H, A, H
w+ (+Higgs) ChC(l"gihpS gXil,z 1/2 m,, < 130 GeV
Y, Z (+Higgs) neutralinos %%, 54 1/2

* No experimental evidence for SUSY — sparticles are heavy

However : to solve SM Higgs mass problem need : m(p)<~1 TeV

* In most popular/motivated models:

-- SUSY particles produced in pairs
-- Lightest Supersymmetric Particle (LSP) is stable

LSP = %%, weakly interacting dark matter candidate
-- all SUSY particles decay to LSP
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SUSY production at LHC

q q
q>‘~§;;~<q

T This particle (neutralino) is neutral and weakly
interacting — escapes detection (like neutrinos)

LHC discovery reach

Time reach in squark/gluino mass
1 month ~1.3 TeV

1 year ~ 1.8 TeV

3 years ~ 2.5 TeV

ultimate up fo ~ 3 TeV

Discovery is not enough o understand and constrain the NEW theory
(and also to be sure that %, is indeed the Dark Matter particle): for this we need to

measure the sparticle masses.
This is the subject of Borge's thesis
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However, this is not so simple ...

Because of the escaping neutralinos, mass peaks cannot be directly reconstructed
 Method: measure end-points of reconstructed mass spectra of visible particles

at each step of (long) squark/gluino decay chains. End-points depend on involved masses
- deduce constraints on combinations of masses

LSP is not directly observable but its mass can be constrained indirectly from
other measurements in final state = information on and consistency with Dark Matter
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Borge's thesis

* Detailed studies on how to determine SUSY particle masses from end-point
measurements

* For the first time, the complexity of such measurements (coming e.g. from
the a priori unknown SUSY phenomenology) has been addressed in deftail

* Pioneering work of scientific significance because this technique

will be the standard method used at the LHC
* For the reasons outlined before the thesis subject is original and well motivated
* The work level meets international standards, as demonstrated also by the two published

papers based on this thesis
* The thesis is written in a clear way, and indicates that Borge masters both

experimental and theoretical/phenomenological issues
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Back-up slides
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Collisions at LHC

Proton-Proton

Protons/bunch 10"

Beam energy 7 TeV (7x10'2 eV)
Luminosity 10 cm?s?

Event rate in ATLAS :

Proton N =L x o (pp) = 107 interactions/s
Mostly soft ( low p; ) events
Parton Interesting hard (high-pt ) events are rare

(quark, gluon)

Selection of 1 in
10,000,000,000,000

Particle

> very powerful detectors needed



Putting all constraints together: m (bbj), m(ll), m(llj)me, m(llj)mn, m(lj)

— bb ﬂ
’—> h Xol . . .
- 0 Sparticle mass | Expected precision 100 fb-!
9.=>9X 2 _ squark left + 3%
|_, 14 R l XOZ + 60/0
| %9, slepton mass + 9%
©°; +12%
100 prrrrprs DAY W S
C Constant 54.26 + 2.252:
Particles directly observable at Point 5: U S omoos  osmor]
9,,.9..8, t, ¢, ,0,,h yg° 8 Micromegas 1.1

- (Belanger et al.)
" + ISASUGRA 7.58

70

From fit of mSUGRA to all experimental measurements
can deduce :
-- fundamental parameters of theory
-- cold dark matter relic density:
Q, h?=0.2247 £0.0035 at Point5
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