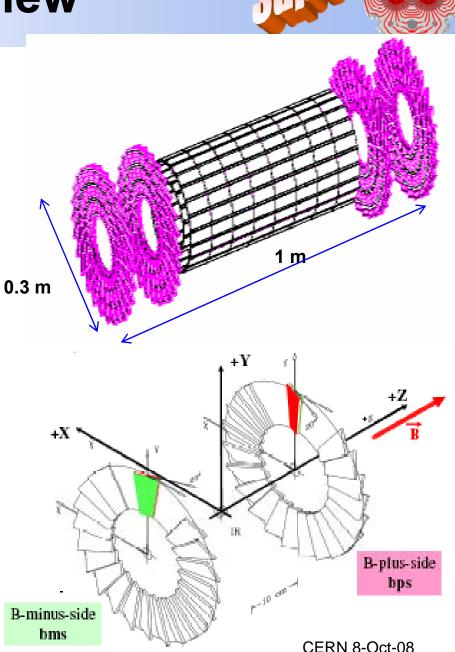


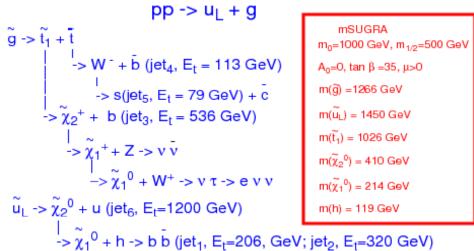
Outline


- Overview of FPix system
 - Technology used
 - Experience in construction and installation
- Limitations at 3×10³⁴ cm⁻²s⁻¹
- Technology choices for the upgrade
 - Risks and opportunities
 - Status of R&D
- Cost and schedule
- Summary

FPiX Overview

- The core of the CMS tracking system is a (hybrid) Pixel detector
- 100 × 150 μm^2 pixel size \Rightarrow excellent spatial resolution ~10-20 μm
- Charge sharing promoted by 4T B field and 20^o tilt in FPiX
- 4 disks (FPix)
 - Z=±34.5 and ±46.5 cm
 - (~ 6 cm above beam line)
 - 96 blades with 672 modules
 - 4320 ROCS, 18 Mpixels
 - Total area 0.28 m²
- Radiation hardness
- Designed for ~6×10¹⁴ cm⁻² (300 fb⁻¹ @ 4.4 cm)

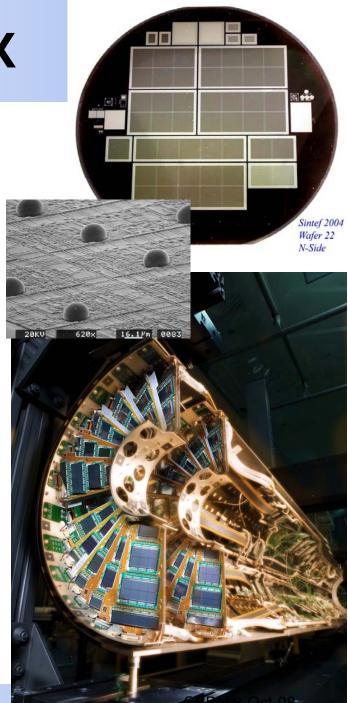
D. Bortoletto



Pixels

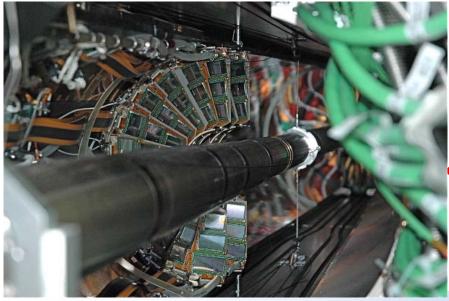
- \bullet The pixel 3D hits are ideal seeds for tracking and μ reconstruction
 - Pattern recognition, all 5 track parameters well constrained
- Excellent position resolution makes pixels essential :
 - for primary and secondary vertex reconstruction
 - for b and τ identification

SUSY h -> b b event in CMS detector



US Role in the FPiX

- Complete Forward Pixel System \$12M (FNAL, Buffalo, Colorado, Cornell, Davis, Nebraska, Kansas State, Iowa, Johns Hopkins, Northwestern, Mississipi, Puerto Rico, Purdue, Purdue Calumet, Rutgers, Tennessee, Vanderbilt)
 - Development of sensors, module design
 - Development of most readout components with the exception of the readout chip (250 nm CMOS, PSI)
 - Testing of the components at several universities and FNAL
 - Selection of vendors to bump bond the pixel sensors to the Readout chip (IZM, RTI)
 - Modules (plaquettes) construction at Purdue
 - Construction, assembly, and testing of panels, blades, and cylinders at FNAL
 - Transportation
 - Mechanical support structure, cooling pipes
 - Installation and commissioning at CERN
 - DAQ, DCS, data base, infrastructure at CERN

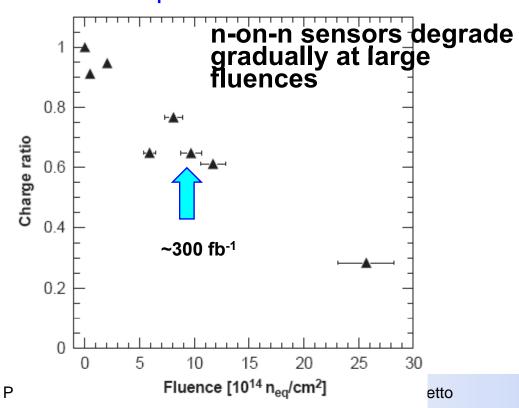


Experience

- Pixel Construction
 - The final ROC (PSI46 V2) received March 2006
 - Production plaquettes started in June 2006
 - First Production Half Cylinder (HC-Z1) shipped 4/26/07
 - Shipment of last Half Cylinder in Dec 07

- Pixel Installation (Jul 31 2008)
 - 9 Hours for each side
 - Night before insertion:
 - Table moved into position and extension rails attached and aligned. Time: 2h
 - Insertion day:
 - Unpack one CTU, raise to table, align, and perform halfpush to intermediate position.
 - Repeat for other CTU. Time (total) 4h
 - Perform synch push: 2h

Despite this success, there were more interferences than anticipated. Improvements are possible and will be important to reduce exposure once the area becomes radioactive.


Pixel Upgrade

D. Bortoletto

- Radiation damage due to integrated luminosity.
 - Sensors designed to survive $6 \times 10^{14} n_{eq}/cm^2$.
 - Dose at 1E34 @inner layer 3×10¹⁴n_{eq}/cm²/year

Note that the table assumes L=60 fb⁻¹at 1×10³⁴ cm⁻²s⁻¹ but if machine works well we could get L=100 fb⁻¹/year at 1×10³⁴ cm⁻²s⁻¹ in 2012

Year	Peak Lumi (x 10 ³⁴)	Integrated (fb ⁻¹)	Integrated (fb ⁻¹)			
2009	0.1	6	6			
2010	0.2	12	18			
2011	0.5	30	48			
2012	1	60	108			
2013	1.5	90	198			
2014	2	120	318			
2015	2.5	150	468			
2016	3	180	648			
2017	3	0	648			
2018	5	300	948			
2019	8	420	1428			
2020	10	540	2028			
2021	10	600	2628			
2022	10	600	3228			
2023	10	600	3828			
2024	10	600	4428			
2025	10	600	5028			
Garoby LHCC July 1, 2008						

nefficiency **Instantaneous luminosity** bsam, wbc 142, 1_{bis} = 10 kHz, V_{cabin} =45 beam, who 142, f =10 kHz, V ==50 beam, wbc 142, f =10 kHz, V attim=60 beam, wbc 142, f =10 kHz, V =80 Pixel dead time calinj, wbc 142, f via=10 kHz, V catrice=60 high luminosity LHC: [10³⁴] 10⁻¹ simulation, who 142, do f +0 ~500 Hz, total 11 cm / 7 cm / 4 cm layer total data loss @ 100kHz L1A: . ÷ 0.8% **PSI:** 10-2 1.2% simulation 3.8% **PSI:**

.

20

40

60

10-3

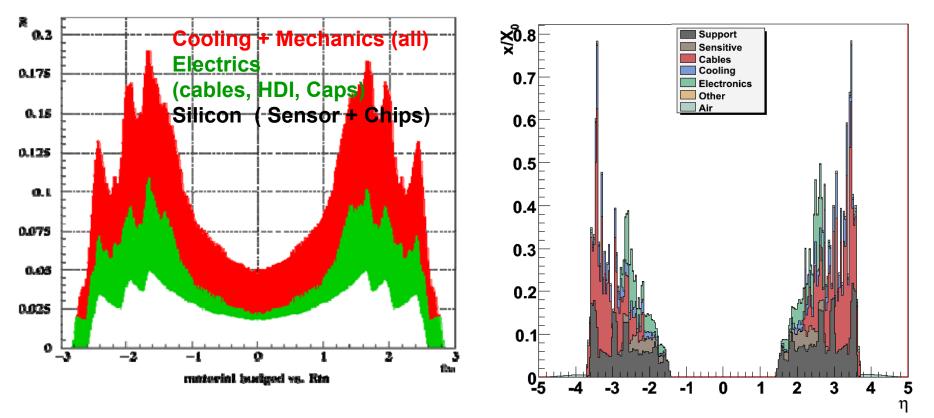
 Dead time will rise to ~12% due to increase in peak luminosity

100

Intensity [MHz/cm²]

120

Beam test


80

BARREL PIXELS

ENDCAP PIXELS

- Material budget both in endcap and barrel
 - Significant contribution from mechanical supports, cables

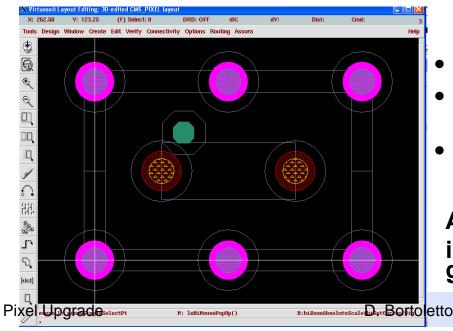
- Baseline: 3 layers (4 layer option) 3 disk in each endcap
 - Detector technology
 - Single sided n-on-p sensors (more rad-hard) instead of n-on-n (fallback)
 - Evaluating 3D sensors industrialization for innermost layer at 4 cm.
 - Readout Chip
 - Double buffer size (in 250 nm CMOS extra 0.8 mm needed for chip periphery)
 - Minimal R&D. Design, verification, testing at high beam rates 8-10 months
 - Mechanical changes
 - Further gains possible with 130 nm CMOS but R&D needed
 - Layout, mechanical assembly, and cooling (aim at material reduction of about a factor of 3 in barrel and 2 in forward)
 - C0₂ cooling (as in VELO for LHCb)
 - Low mass module construction and simplified thermal interfaces
 - Further material reduction can be acheived with on module digitization:
 - R&D needed: It requires new ADC and Token Bit Manager changes

(no half modules)

- 4 layer system has 1.8x more modules than present 3 layer system
- Severe infrastructure constraints
 - DC-DC step down converters to bring more power through cables
 - high speed links to transmit 3.6x more data through same fibers
 - have advanced bi-phase cooling (e.g. CO₂) in same pipe x-section

<u>radius</u> [cm]	<u>length</u> [#mod]	<u>faces</u>	<u>#modules</u>				
16.0	10	64	640				
10.4	8	42	336				
7.3	8	30	240				
4.4	8	18	144				

Cost estimate for following system:


- Nonetheless 4 layer system could :
 - Solve potential problems if inner silicon tracker layer fails
 - Strengthen pattern recognition in more complex events
 - Decision after we see first LHC data. It could be installed after 2013

Sensor R&D

- n-on-p Submission with HPK:
 - Test different substrates n-on-p Rad hard up to ~3×10¹⁵ cm⁻²
 - Different thickness
 - n-on-p versus n-on-n
 - Pixel isolation (p-spray and p-stop)
 - Expect delivery February 2009

3D - Submission with Sintef

3D Rad hard up to ~10¹⁶ cm⁻²

• Shared with ATLAS and MEDIPIX

龗⊘

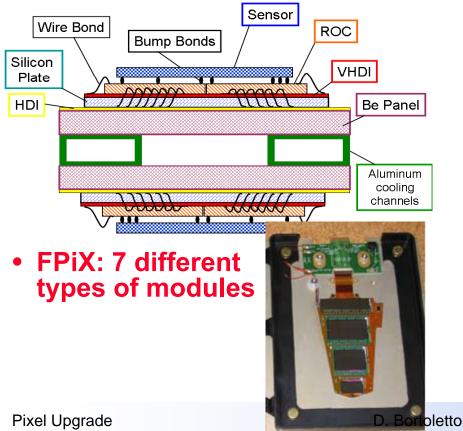
Pixel (66.34 × 59.52mm)

BARREL

(64.62 × 63.14mm) -

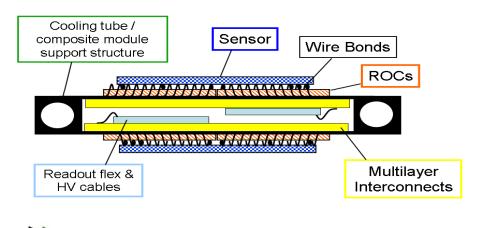
- Sintef produced the CMSFPIX sensors
- First prototypes for bump-bonding in spring 2009

A two column pixel implemented in the CMS pixel geometry


Mechanical R&D

Current FPIX blades have:

- passive Si and Be substrates
- brazed aluminum (0.5mm wall thickness) cooling channels


LARGE MATERIAL BUDGET

Integrated modules R&D

• Flip chip modules mounted on high heat transfer/stiff material (ex. pyrolytic graphite).

LOW MATERIAL BUDGET

- New system: one module type
- Light support structure
 - More in Kirk's and Simon's CERN talk

CO₂ R&D

CO₂ properties match silicon detector applications

- Low viscosity and low density difference between liquid and vapor is ideal for micro channels (d<2.5mm)
 - Great saving in material budget liquid (CO₂ is ~ 1.03 g/cm³ compared to 1.76 g/cm³ of C₆F₁₄)
 - Small area for heat transfer → need to route enough tubes for sufficient thermal contact with pixel modules
- Ideal for serial cooling of distributed heat sources
- Radiation hard
- •Optimal operation temperature -40°C to +20°C
- "No showstoppers" for existing CMS pipes (aim for maximum of 40 Bar, Pipes rated to 150 Bar)
- CO₂ cooling excellent candidate for upgrade
- We are constructing a CO₂ cooling system for lab bench testing
 More in Terry's talk

Already used by LHCb VELO detector

LHCb CO₂ cooling tube

Pixel Upgrade

D. Bortoletto

- Many groups are involved in the planning for the Phase 1 Pixel replacement
 - FNAL (mechanics, sensors, cooling, electronics including power distribution)
 - PURDUE (sensors, modules, cooling integration into modules)
 - PIRE collaboration which includes Kansas, Kansas State, Nebraska, Puerto Rico, UIC (Sensor, ROC, bump bonding)
 - Mississippi (mechanical support)
 - Iowa (cooling), Purdue Calumet (testing)
 - +others?
- Most groups have submitted R&D proposals that have been evaluated by CMS and have received a positive evaluation

Schedule and Budget

🖝 YET TRACK COMMISSIONING

2017

Schedule and cost was developed using the experience of building the FPiX disks

	Task Name	2007	2008	2009		D10	2011	2012	2013	2014	2015	2016
0	UPGRADE		\$46,445	,123.54							UPGRADE	
1	Starting date			l 1	🔶 Sta	urting date	÷					
2	E PHASE 1		\$46,445	,123.54						• ••	PHASE 1	
3	Pixel system		\$27,529	,024.00	-					'ixel syster	n	
4	new 3 disks system on each side		\$8,164	,320.00	-				new 3	lisks syste	em on each	side
5	Sensor				\$862,32	0.00		Sensor				
6	Sensor production				\$750,0	00.00	Se	nsor produ	ıction			
7	Sensor testing					\$112,32	0.00 🎽	Sensor te	sting			
8	ROC and TBM		\$237	,600.00	-		R	OC and TBI	Л			
12	BUMP BONDING				\$1,2	200,000.00		-	BUMP BOI	IÐING		
14	Mechanical				\$3,	321,840.00			Mecha	nical		
15	Plaquette assembly					\$449,280	la p	Plaquet	te assembl	У		
16	Cooling channel assembly				\$	633,600.0	0	Coolin	g channel a	ssembly		
17	Detector assembly					\$1,848,9	60.00	Det	tector asse	mbly		
18	Berilium substrate and cooling channels				\$	5300,000.0	0	🛑 Beriliun	n substrate	and coolin	g channels	
19	Outer inner nipples						\$90,000).00	📩 Outer in	ner nipples	3	
20	Electronic boards and flex circuits				\$2,542,5	560.00 🖤		Ele	ctronic boa	rds and fle:	x circuits	
21					\$2,542,5	GO.OO 🛡		- bo	ardə produ			
26	H avers barrel system ■		\$18,709	,504.00	-				• ••• •	new 4 layer:	s barrel sys	stem
48	TC		\$655	,200.00	-			• • •	пс			
53	Trigger Processor		\$2,570	,400.00	**						Trigger Pro	ocesso
54	🛨 Jet Track		\$2,448	,000.00	-						Jet Track	
70	YET TRACK COMMISSIONING							\$12	2,400.00 🖝	—	YET TRACK	сомм
72	🖃 Muon		\$7,017	,019.54						🔶 Muon		
73	🛨 Emu ME4/2 upgrade		\$7,017	,019.54	-					🌞 Emu ME	4/2 upgrade	e
90	- HCAL		\$9,328	,680.00						•	HCAL	
91	FRONT END		\$5,500	,000.00	-						FRONT END	
92	± SIPM					\$1,000,0	00.00 🛡		SIPM			
94			\$1,500	,000.00	-						ODU	
100	• FE ASIC		\$1,500	,000.00	-					—	FE ASIC	
106						\$1,500,0	00.00 🛡				FE CARDS	
110	🖃 BACK END		\$2,825	,000.00	-						BACK END	
111	+ HTR		\$2,125	,000.00	-						HTR	
117				,000.00	•				—	DCC		
122	± Labor		\$1,003		•					ا چ	abor	
Upo	jrade		D. Bor	tole	tto							

CERN 8-Oct-08

Cost Detail

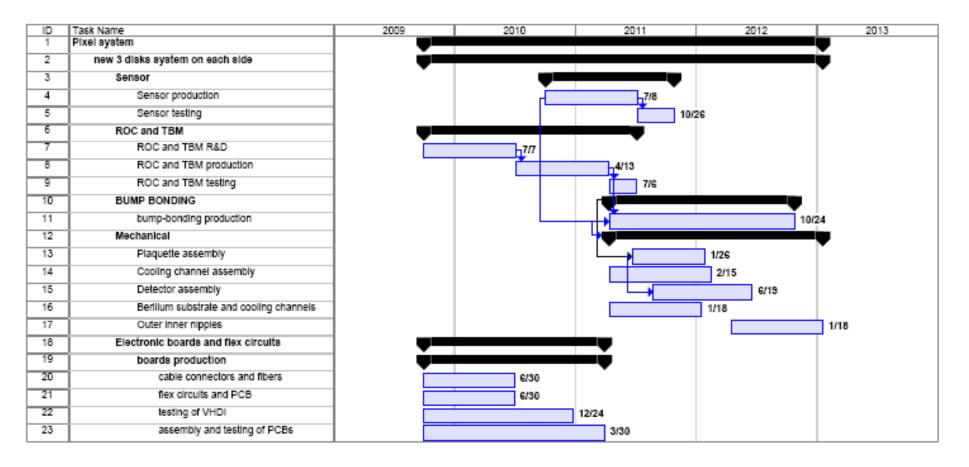
- FY08 total cost \$ 30.2M (Labor \$19 M, M&S \$11 M)
- Use experience from FpiX which was completed in FY08
- 3 disks on each side= 8.16 M\$ (including engineering & labor + some contingency):
 - Sensors
 - ROC & TBM
 - Bump Bonding \$1,200,000
 - Mechanics
 - Electronics

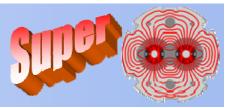
- S 862,320 \$ 237,600

\$ 3,321,840

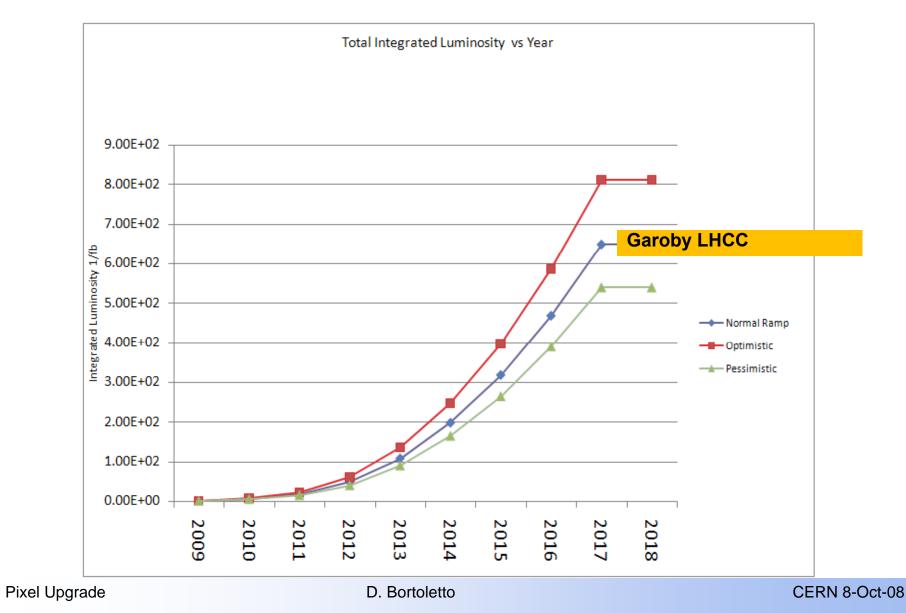
\$ 2,542,560

FY08 dollars



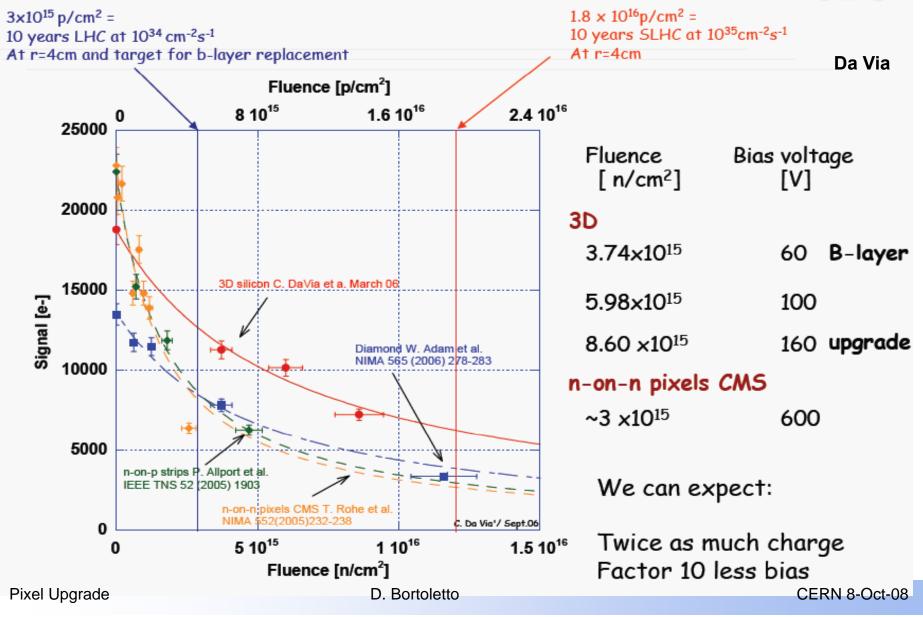

Schedule Detail

- Expect to finish R&D in mid FY10
- Assume Project funding starts FY10
- 3 disks system completion in 2013


- SLHC Phase 1 Pixel upgrade is critical to maintain pixel capabilities at the higher luminosity
- The new system will improve:
 - Radiation hardness (integrated luminosity)
 - Data losses (peak luminosity)
 - Reduce material budget
 great for physics
- Phase 1 replacement/upgrade is a stepping stone for the Phase 2 upgrade which will use the same low material budget mechanics & cooling.
- Upgrade needs to be focused since Phase 1 replacement project will have to be done in parallel with Phase 2 upgrade R&D for 10³⁵ which is very challenging
- Three disks system ready for installation in 2013.
 - Need finish RD by mid FY10. Construction in FY11 and FY12.

Pixel Upgrade

18



Radiation Hardness

20

