FEA on the Conceptual Design of the FPIX substrate for the CMS upgrade

C. M. Lei Simon Kwan 10/07/08

Material Budget

MS Forward Pixel B	lade Radiati	on Length Estima	te											
Assumes	Blade mass spread out Bormal tracks (20deg	evenly over area of a le substr camber not accounted for)	ate face											
181	. Calc Assumes Mass Aver	aged over as Offictive Area of	42.78	cm^2										
			Volume Fract.	Length (mm)	Width (mm)	Thickness (mm)	Subkerry Volume (me*3)	Qty	Total Volume (mm^2)	Density (g/mm^2)	Xa.e (g)	Mat1 End Length (g/cm ²)	WEL	Percent of Total ARL
ensors											4.9		0.50	12.0
ind ind ind ind ind ind ind ind ind ind	CHETEFFE.0001 CHETEFFE.0002 CHETEFFE.0002 CHETEFFE.0004 CHETEFFE.0005 CHETEFFE.0005	(62/37 Tim/Lead) Accylic 8% powder Sillcome Polytetde	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19.49 42.79 26.59 24.69 42.79 9.94 9.94 9.94 9.94	10.39 10.39 18.49 18.49 18.49 9.01 0.02 9.01 9.01 9.01 9.01	0.270 0.270 0.270 0.270 0.270 0.190 0.025 0.025 0.125 0.125 0.025	\$1.9 120.1 122.9 173.2 213.7 15.1 0.0 2.0 2.0 8.0 2.0	1 1 2 2 2 1 45 197200 45 45 45 45	\$1.9 120.1 265.6 246.5 212.7 680.0 2.9 89.5 257.9 89.5	0.00222 0.00232 0.00232 0.00232 0.00232 0.00232 0.00232 0.00310 0.00310 0.00310	0.121 0.290 0.619 0.807 0.499 1.584 0.026 0.098 0.313 0.465	21.92 21.92 21.92 21.92 21.92 21.92 7.72 40.00 41.39 25.15 39.39	0.01 0.03 0.07 0.09 0.05 0.17 0.01 0.02 0.02	0.3 0.7 1.6 2.1 1.3 4.1 0.2 0.1 0.4 1.8
HDIø											8.7		0.93	22.4
Substrates IM POSS tape (VHDS to substrate) VHDIS Capacitors Sadistors Solder Chothers1680 (HDE-to-plaquette)	CMSTERFE.000F a 0009 CMSTERFE.0012 a 0011 CMSTERFE.0012 CMSTERFE.0014 CMSTERFE.0014 See doodh #021 V.C. emmil 10/1/06	1 × 2 1 × 5 2 × 3 2 × 4 2 × 6 2 × 7 2	1.00 1.00 1.00 1.00 0.20 0.20 1.00 0.60 1.00 1.00 1.00 1.00 1.00 0.20 0.20	21.36 45.66 29.46 39.56 45.66 45.66 Tot Areas = Tot Areas = 1.00 0.20 Tot Areas = Tot Areas = 1.00 Tot Areas =	15.05 15.05 27.77 27.77 27.77 27.77 2653.26 6653.26 6653.26 0.50 Volume = 0.20 6653.26 6653.26 6653.26 6653.26	0.200 0.200 0.200 0.200 0.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	96.4 206.1 245.4 321.2 380.3 242.1 60.5 544.9 0.1 0.0 0.0 151.3 605.3	1 1 2 2 1 1 1 1 1 1 1 1 1 0 270 1 1 1	96.4 206.1 490.1 642.4 280.3 242.1 60.5 644.9 16.9 0.0 5.4 161.3 161.3 161.3	0.00232 0.00232 0.00232 0.00232 0.00232 0.00110 0.00140 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	0.225 0.490 1.147 0.995 0.262 0.262 0.262 0.762 1.361 0.000 0.049 0.166 0.520 0.797 0.212	21,92 21,92 21,92 21,92 21,92 40,00 47,39 39,39 11,31 27,46 40,00 42,39 40,00 42,39 26,13	0.02 0.05 0.12 0.16 0.09 0.02 0.01 0.05 0.25 0.02 0.01 0.01 0.01	0.6 1.2 2.9 2.3 0.4 0.3 1.1 5.9 0.5 0.1 0.2 0.7
DIs											12.5		0.80	19.2
Substrates HDI Capacitors Resistors Solder Tim Chip IM 9881 tape (HDI to substrate) Hims / Ground Mires	CMSTEPPE.0007 V.C. semil 10/3/06 See doodb #921 CMSTEPPE.0012	(Se) Kapton Internal flat adhesive Copper (SatioS assured) (Altonia, NID added as 2 actor (6/3/37 Intlead) Silicom Actylic assured Cornaic (SN assured) Copper	1.00 1.00 1.00 0.29 1.00 1.00 1.00 0.20 0.20	Area = Area = Area = Area = 0.76 0.76 4.42 Area = Area =	4279.00 4279.00 4279.00 4279.00 0.50 0.50 Volume = 3.20 4279.00 0.00	0.509 0.100 0.060 0.067 0.640 0.640 0.600 0.600 0.060	2173.2 427.9 217.9 67.5 0.2 0.5 0.6 171.1 42.9 6.0	2 2 2 2 9 17 2 2 2 2	4246.4 955.6 427.9 124.9 1.9 2.2 9.5 1.2 342.2 85.6 26.2	0.00185 0.00140 0.00125 0.00320 0.00602 0.00326 0.00320 0.00320 0.00320	8.032 1.199 0.535 1.255 0.012 0.007 0.075 0.003 0.376 0.299	65.19 39.39 40.00 12.96 11.21 27.46 7.72 21.92 40.00 42.39 12.96	0.29 0.07 0.03 0.23 0.01 0.01 0.02 0.02 0.02	0.9 0.8 5.5 0.1 0.8 0.5 0.8 0.5 0.8
		Kapton Solder (63/37 Tin/Lead) Spoxy In Solder (62In 49Sn)	1.00 1.00 1.00 1.00	Ares -	0.22 Volume = Volume = Volume =	90.000 1.000 15.000 3.000	19.1 1.0 16.0 2.0	12 2 2	100.7 12.0 20.0 6.0	0.00140 0.00980 0.00110 0.00730	0.152 0.106 0.023 0.044	38.39 7.72 40.00 8.92	0.01 0.03 0.01	0.2 0.5 0.8 0.3
apport Hardware											20.9		1.92	46.3
Panel + Channel Screws Cooling Channel Outer Ring Inner Ring Coolant	CHETEPEP.0115 a 0121 CHETEPEP.0128-A CHETEPEP.0126	(Ti, Mi.6) (Al, includes 1 jumper) (Al, model vol. / 12) (Al, model vol. / 12) (CEF14 volume from V.P.)	1.00 1.00 1.00 1.00		Volume = Volume = Volume = Volume =	17.624 3261 1774 796 16530	13.6 2261.0 1773.9 796.1 15630.0	9 1 1 1 0.1667	122.6 3261.0 1772.9 796.1 2589.3	0.00454 0.00270 0.00270 0.00270 0.00270	0.557 8.905 4.790 2.150 4.628	16.17 24.01 24.01 24.01 34.92	0.08 0.86 0.47 0.21 0.21	1.9 21.6 11.2 5.1 7.5
mes nor mecans. Adapter Board Other plumbing hardware Survey Balls												Total - Total -	4.16 47	% RL grams

The Al cooling channel

They are the most complicated component of the Disk. They are made out of 2 blocks of Al aluminum brazed together. It took 5 prototyping submissions, with Bodycote, over 5 years to develop a reliable process.

```
1<sup>st</sup> Brazing U. Miss. Dec 2000 - Sep 03
                                            Data Base # xxxxxxx
                                            Data Base # xxxxxxx
2<sup>nd</sup> Brazing FNAL
                     Nov
                             02 - May 03
                                            Data Base # xxxxxxx
3rd Brazing FNAL
                     Mar
                            03 - Jun 03
4<sup>th</sup> Brazing FNAL
                     Jun
                            03 - Apr 04
                                            Data Base # xxxxxxx
5<sup>th</sup> Brazing FNAL
                     Feb
                            05 - Dec 05
                                            Data Base # xxxxxxxx
```

Prototypes from last subm. have been used to assemble the first ½-Disk

For each of the ± z sides 3 types of channels are needed!

Material Candidates									
	Density	Modulus, E_ab	Modulus, E_c	Strength	Thermal K_ab	Thermal K_c	cte_ab	cte_c	Rad L, X0
	g/cc	Gpa	Gpa	Мра	W/m-K	W/m-K	ppm/K	ppm/K	cm
Porous Materials									
fuzzy C, 5% pr	0.11	-	-		-	55	-	1.0	406.7
carbon foam, low density	0.25	0.9			15	20	3.5		170.8
SiC foam, 8% packing ratio	0.26	2.8	2.8		11	11	2.2	2.2	166.1
RVC foam (vitreous C)	0.30	0.1	0.1	0.3	0.5	0.5	2.2	2.2	142.3
carbon foam, medium density	0.35	3.0		-1.6	20	25	3.5		122.0
carbon foam, high density	0.45	5.0		-3.5	25	40	3.5		94.9
poco-foam, 25% pr	0.55	20.7	20.7	-2.07	45	135	2.5	2.5	77.6
rohacell	0.03	0.0	0.0	1	0.0	0.0	37.0	37.0	1497.7
Solid Non-metalic Materials									
pyrolitic graphite, PGS	1				600	600.0	0.9	32.0	42.7
peek	1.32	3.6	3.6	92.9	0.2	0.2	46.8	46.8	35.0
CoolPoly E5101 (PPS)	1.70	13.0	13.0	45.0	20	20	15.0	15.0	26.5
CFRP (M46J-epoxy)	1.61	18.1	7.3		56	0.7	0.0	30.2	26.5
glassy C	1.65	20.0	20.0		5	5	3.0	3.0	25.9
CFRP (K13C2U-epoxy)	1.75	483.0	6.2		320	0.5	-1.0	26.0	24.4
CFRP (K139-EX1515)	1.76	154.0	6.4		63	0.4	-0.8	30.4	24.3
Poco graphite ACF-10Q	1.77	11.0	11.0	69.0	60	60	7.6	7.6	24.1
C-C composite (carbon fiber/carbon matrix)	1.80	152.0	4.8		225	150	2.0	2.0	23.7
SiC	3.21	466.0	466.0	-3900	40	40	3.3	3.3	8.1
G10 (glass fiber/epoxy)	1.8	17.2		262.0	0.3	0.3	11.9	11.9	19.4
pyrolitic graphite, TPG	2.26	1050.0	36.0		1700	10	-1.0	25.0	18.9
Alumina Silicate	2.80			17.5	1.2	1.2	2.9	2.9	14.2
Vespel SP1 Polyimide	1.43	2.4	2.4	87.3	0.3	0.3	54.0	54.0	31.9
CVD Diamond	3.51	1000.0	1000.0	400.0	2000	2000	1.0	1.0	12.0
DLC (diamond-like carbon) coating									
Solid Metalic									
Be	1.85	290.0	290.0	276	145	145	11.6	11.6	35.4
AlBeMet	2.10	200.0	200.0	192	210	210	13.9	13.9	16.1
BeO	2.90	345.0	345.0	138000	330	330	7.6	7.6	13.3
Aluminum Nitride (AIN)	3.26	331.0	331.0	-2100	165	165	4.5	4.5	10.3
silicon	2.33	110.3	110.3	-120	120	120	2.6	2.6	9.4

CMS Pixel Mechanical Upgrade

Substrate Cooling FEA 10/07/08

Items Selected for the Conceptual Design

- Material selected for Substrate
 - TPG laminated with carbonfiber reinforced plastic
 - Low mass (X0 = 18.9 cm)
 - Radiation hard
 - Dimensionally stable
 - Very high thermal conductivity
 1600 W/mK at room
 temperature

- Cooling selected for Substrate
 - High-pressure CO2 with small tubing
 - Low mass
 - Radiation hard
 - High thermal performance
 - >> small cooling tube will be used.

The major task is thus to design the cooling layout and how to bond the cooling tubing to the TPG substrate properly.

Thermal Pyrolytic Graphite (TPG)

- A unique form of pyrolytic graphite
- Made by the decomposition of a hydrocarbon gas within vacuum furnace
- High thermal conductivity (in-plane k = up to 1700 W/m-K, out-of-plane k = 10W/m-K at room temperature)
- Low CTE (in-plane = -1 ppm/C, out-of-plane = 25 ppm/C)
- Low density = 2.26 g/cc
- X0 = 18.9 cm (X0*k = 321 W/K vs 51 W/K of Be)
- Friable, needs encapsulation; carbon fiber composite is chosen for needed rigidity within material budget constraint.
- Extensive studies performed by BTeV from 2002-2005. Also used by ATLAS (strips) and LHCb.
- Vendors:
 - Momentive Performance Materials (http://advceramics.com/)
 Quote: TPG0044
 TPG .38MM THKx90mmx150mm LG
 .38MM +/-.03mm
 20-50pc's 203.50ea.
 - MiNTEQ (http://pyrographite.com/)

TPG Experience at FermiLab

TPG Experience at FermiLab ...continued (1)

The BTeV prototype was made and thermal cyclic tests with heaters and cooling on and off were conducted. Results were satisfactory, no alarming problem was found.

> Test was conducted within a dry box with small amount of nitrogen flowing

> Kapton heaters on dummy silicon were used to simulate module heat load

> Cooling contacts were provided at ends

>An optical camera was used to observe the target displacements

>RTDs were glued on substrate to record thermal data

>Pin & hole engagement at large end

>Pin & slot engagement at small end

TPG Experience at FermiLab - continued (2)

It was successfully used for MTest Pixel Detector this year (2008)

TPG encapsulated with two plies of CFRP for the facing

PEEK Cooling tube glued on the back of TPG

TPG Experience at FermiLab - continued (3)

It is planned to use for the PHENIX pixel detector as well.

TPG encapsulated with two plies of CFRP for the facing

PEEK Cooling tube glued on the back of TPG

TPG Experience at FermiLab - continued (4)

TPG Thermal Conductivity [W/m K]

- No alarming problems were found.
- Perforated holes drilling on TPG was needed before encapsulation. It would improve the rigidity of the substrate.
- Tensile pulling test on encapsulated TPG samples were done, and the improved strength was verified.
- Thermal conductivity measurement of TPG were checked and its high thermal K characteristic at low temperatures was verified.
- Plasma cleaning on the CFRP encapsulated TPG was checked, the thermal performance could be slightly improved as a thin layer of the impregnated epoxy was removed.
- TPG might not be very flat due to the relief of internal stress when made at the factory. It could be flattened somewhat when CFRP was added.

This perforated hole was basically filled up completely with epoxy

Averaged Heat Load Density used in this FEA

Sensor Dimensions

	width, mm	height, mm	area, mm^2
1	40.5	8.1	328.05
2	40.5	16.2	656.1
3	32.4	16.2	524.88
4	32.4	16.2	524.88
5	24.3	16.2	393.66
6	24.3	16.2	393.66
7	16.2	8.1	131.22

total area = 2952.45 or 29.5245 cm²

2X3 End Disks Heat Load, W
ROC 962
control & driver 27
sensors 365
Total 1354

Each end disk has 24 blades, or 48 substrates, heat load per substrate = 1354/6/48 = 4.701

Heat load density = 4.7W/29.5245 = 0.159 W/cm^2

The tentative basic structure – the blade, which consists of 2 substrates with cooling tubing in between.

Commercially Available ss 316L tubing

From Eagles Stainless Tube & Fabrication, Inc

						Pressure, bar	Pressure, bar
OD, inches	t, inches	OD in mm	ID in mm	t, mm	Rad L due to 2 t	due to yield	with $SF = 3$
0.0645	0.009	1.6383	1.1811	0.2286	2.54%	558	186
0.0645	0.006	1.6383	1.3335	0.1524	1.69%	372	124
0.0645	0.004	1.6383	1.4351	0.1016	1.13%	248	83
0.0615	0.005	1.5621	1.3081	0.127	1.41%	325	108
0.0575	0.008	1.4605	1.0541	0.2032	2.26%	557	186
0.0575	0.005	1.4605	1.2065	0.127	1.41%	348	116
0.0575	0.003	1.4605	1.3081	0.0762	0.85%	209	70
0.0555	0.005	1.4097	1.1557	0.127	1.41%	360	120
0.0495	0.0085	1.2573	0.8255	0.2159	2.40%	687	229
0.0495	0.006	1.2573	0.9525	0.1524	1.69%	485	162
0.0495	0.004	1.2573	1.0541	0.1016	1.13%	323	108
0.0455	0.0065	1.1557	0.8255	0.1651	1.83%	571	190
0.0415	0.0075	1.0541	0.6731	0.1905	2.12%	723	241
0.0415	0.005	1.0541	0.8001	0.127	1.41%	482	161
0.0415	0.0035	1.0541	0.8763	, 0.0889	0.99%	337	112
0.0385	0.006	0.9779	0.6731	0.1524	1.69%	623	208
0.0355	0.006	0.9017	0.5969	0.1524	1.69%	676	225
0.0355	0.005	0.9017	0.6477	0.127	1.41%	563	188
0.0355	0.004	0.9017	0.6985	/ 0.1016	1.13%	451	150
0.034	0.004	0.8636	0.6604 /	0.1016	1.13%	471	157
0.032	0.006	0.8128	0.508	0.1524	1.69%	750	250
0.032	0.005	0.8128	0.5588 /	0.127	1.41%	625	208
0.032	0.002	0.8128	0.7112 /	0.0508	0.56%	250	83
0.03	0.0035	0.762	0.5842/	0.0889	0.99%	467	156
0.028	0.006	0.7112	0.406 4	0.1524	1.69%	857	286
0.028	0.004	0.7112	0.50/8	0.1016	1.13%	571	190
0.028	0.0025	0.7112	0.58/42	0.0635	0.71%	357	119
SS	ss tubing used in this FEA						

K Values used in this FEA

Thermal Conductivities K of TPG, In-Plane

Temp in K	K in W/m-K
-----------	------------

Thermal K of epoxy (3M DP190 Gray) = 0.38 W/mK

Thermal K of TPG, Out-of-Plane = 10 W/mK

0/90 Carbon-Fiber Facing, In-Plane	=	63.3 W/mK
0/90 Carbon-Fiber Facing, Out-of-Plane	=	0.6 W/mK
0 Carbon-Fiber Facing, In-Plane	=	126 W/mK
0 Carbon-Fiber Facing, Out-of-Plane	=	0.6 W/mK
Carbon-carbon, In-Plane	=	225 W/mK
Carbon, Out-of-Plane	=	150 W/mK
Pocofoam, In-Plane	=	45 W/mK
Pocofoam, Out-of-Plane	=	135 W/mK

Configurations Analyzed in this FEA

- Two cooling layouts.
 - Conf. A >> U-shape
 - Conf. B >> Lateral X2
- Two different sets of layer thickness (same overall substrate thickness at 0.62 mm)
 - T1 >> 0.06 mm 1-ply cf + 0.50 mm TPG + 0.06 mm 1-ply cf
 - (total rad L % = 0.025% + 0.205% + 0.025% = 0.255% of X0)
 - T2 >> 0.12 mm 2-ply cf + 0.38 mm TPG + 0.12 mm 2-ply cf
 - (total rad L % = 0.049% + 0.157% + 0.049% = 0.255% of X0)

<u>Conf. A-T1: 0.06 cf + 0.50TPG + 0.06 cf Substrate</u>

200% heat load (0.318 W/cm²) 4.44 W on this half substrate

CMS Pixel Mechanical Upgrade

Substrate Cooling FEA 10/07/08

17

Conf. B-T1: 0.06 cf + 0.50TPG + 0.06 cf Substrate

200% heat load (0.318 W/cm²) 4.44 W on this half substrate

CMS Pixel Mechanical Upgrade

Substrate Cooling FEA 10/07/08

<u>Conf. B-T2: 0.12 cf + 0.38TPG + 0.12 cf Substrate</u>

200% heat load (0.318 W/cm²) 4.44 W on this half substrate

Summary of Results

<< All substrates are with overall thickness 0.62 mm and under 200% heat load >>

Configuration	ΔT , tubing	ΔT , tube epoxy	ΔT , foam	ΔT , subs epoxy	ΔT , substrate	ΔT , overall
A-T1	0.2	5.2	1.3	3.7	3.8	10.5
A-T2	0.2	5.2	1.3	4.2	5.1	12.2
B-T1	0.3	7	1	4.5	3.5	13.5
B-T2	0.3	7	1.1	5.1	5.8	15.6
A - berylium					13.9	19.4

Configuration A-T1 performed the best with least temperature drop.

For Comparison

Conf. A: 0.62 mm thick Berylium Substrate

200% heat load (0.318 W/cm²) 4.44 W on this half substrate

Conclusions on this FEA with 200% Heat Load

- The temperature drops across the substrate were small.
- The temperature drops across the tubing and pocofoam were small.
- The major temperature drops occurred across the epoxy layers.
- The temperature drops of the thicker TPG with 1-ply cf facings configuration (-T1) were slightly better than the thinner one (-T2) by about 2 degrees C.
- In some previous FEA work,
 - The direct gluing of the small tubing to the TPG would result in a huge temperature drop. (~15 C more). An area spreader made of pocofoam or CC might be preferred.
 - The thermal performances of the pocofoam and CC were found about the same.
- For the cooling layout of configuration A, the major temperature drops across the substrate should be even smaller if the tip of the U-shape cooling tube is pushed deeper towards the beam axis. (It may not be preferred as it means more mass of material in region closer to the beam.)

Proposed Conceptual Design

- TPG will be used for the core of the substrate.
- The major function of the carbon fiber facing is to provide the encapsulation. This can be simply made by adding one ply of carbon fiber reinforced plastics (CFRP). So 1 ply K139-EX1515 CFRP will be used unless extra rigidity is needed.
- Pocofoam is much less expensive than CC and much easier to make. Pocofoam will be tried first.
- The U-shape cooling line profile will be used. The tip of the U channel may be arranged 10~20 mm closer to the beam axis if acceptable.