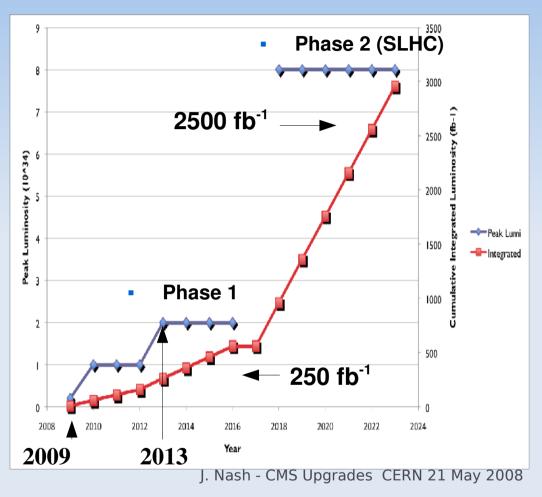


Pixel replacement/upgrade for Phase 1


- Implications of the LHC luminosity upgrade for the pixel system
- Inefficiencies of the present CMS pixel detector for LHC ugrade
- Status of the R&D activities at PSI
- Possible scenarios for the 2013 upgrade

Valeria Radicci University of Kansas

LHC Luminosisty upgrade plan

Nominal Peak Luminosity:

- 2009 → 2013 $L_{PEAK} = 1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Phase 1 (Intermediate upgrade)
 L_{PFAK} = 2x10³⁴ cm⁻² s⁻¹
- Phase 2 (SLHC)
 L_{PFAK} = 8x10³⁴ cm⁻² s⁻¹

Beam luminosity:

- → Radiation damage of the components
 Inner pixel layer: needs replacement after
 2-3 years @ full luminosity
- → Occupancy of the read out electronics
 Inner pixel layer: already close to the limit
 (i.e. data loss ~4%)

Pixel replacement/upgrade plans for Phase 1

The intent is to mantain constant performance for the whole lifetime of CMS at LHC →

Option 0. Replace the sensors after the first years of running of LHC ~ 2013!

Option 1. (If $2x10^{34}$) upgrade the electronics to improve the inefficiencies at higher rates would be desireble (Phase 1: data loss \rightarrow 10%)?

Option 2./3./4. Can we try to reduce the material budget of the pixel system?

Option 5. want to have 4 barrel pixel layers and 3 forward pixel disks but cannot provide low volage power and fibers.

Roland Horisberger, SLHC meeting at CERN 21/05/08:

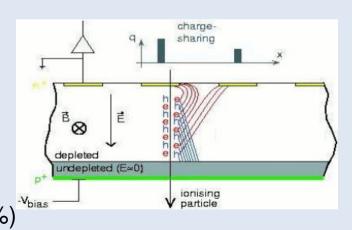
0. Silicon sensor limitations

2009 → 2013 : Bpixel Radii : 4 / 7 / 11 cm layer

 ϕ / year : 3 / 1.2 / 0.6 10¹⁴ neq/cm²

Phase 1: Double the fluences!

All the components of the present pixel detector remain operational up to 6 x10¹⁴neq/cm² (TDR)


Radiation damage:

charge trapping → collect e- → n+/n or n+/p space charge variation → benefit from DOFZ or MCz

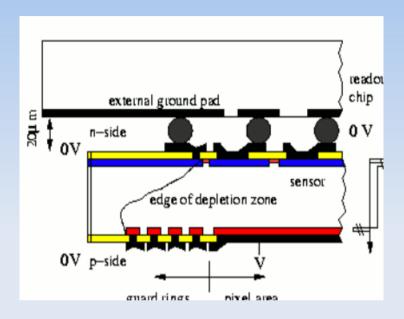
BUT

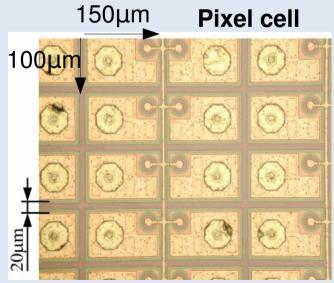
- High field reduces mobility of charge carriers
- · Lorentz angle is reduced
- no benefit from charge sharing (single pixel clusters)

Detector might become "useless" for impact parameter measurement although detection efficiency can be high (90%)

→ SENSORS & MODULES Session

Sensors for 2013 upgrade


Present CMS Barrel Pixel Sensor design:

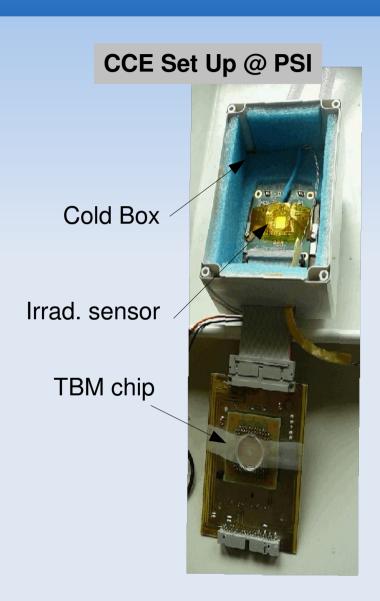

- n+ on n substrate
- 150x100µm pixel
- distance between pixel implants 20µm (Gap)
- DOFZ (standard FZ material enriched with oxygen)
- inter-pixel isolation moderated p spray

Use same design for Phase 1

R&D plan:

- (I) try to determine the ultimate limit of the detection efficiency and loss of the signal charge by trapping.
- (II) Investigate slightly modified sensor geometry (Gap = 30µm) and safer guard ring structures.
- (III) Characterization of n+ on p, Mcz before and after irradiation. The samples are at PSI to be irradiated next year.

Sensors for 2013 upgrade

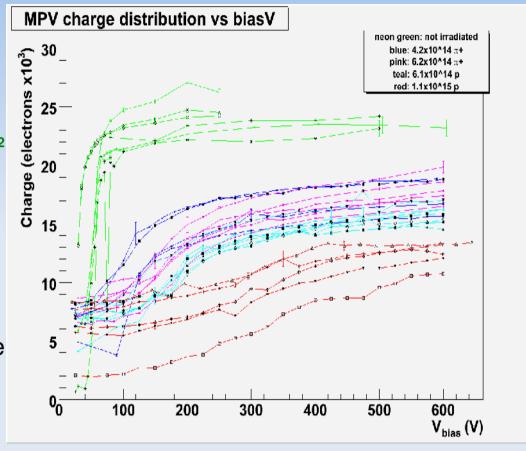


Last irradiation campaign of barrel pixel sensors during 2007:

- 24GeV protons at CERN
 - 4 fluences up to 5.1x10¹⁵ neq/cm²
 - 33 samples (Gap20 and Gap30)
- 300MeV pions at PSI
 - 3 fluences up to 6.2x10¹⁴ neq/cm²
 - 14 samples (Gap20 and Gap30)

Charge Collection Efficiency Measurement:

Sr90 source Cold box ~ -10°C

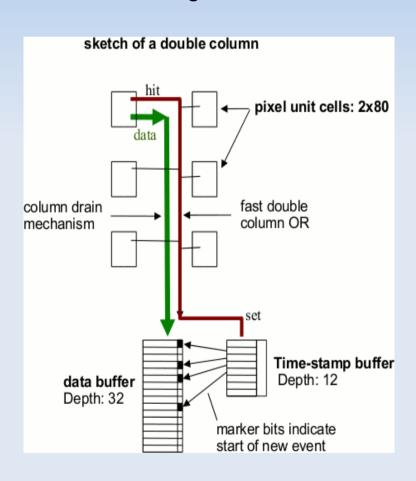


Sensors for 2013 upgrade

Measurements performed by PIRE students: Jennifer, Jhon, Chris.

- ROC calibration and charge measurement without any problem up to 1.1x10¹⁵ neq/cm²
- 1.1x10¹⁵ neq/cm²
 - Charge $> 10000 e^{-}$ (CCE $\sim 50\%$)
 - V_{dep} ~ 450V
- @ the last two fluences the calibration of the ROC settings gave problems (standard procedure optimized for unirradiated chip): further investigation.

10000e- is still fine **but** operating with $V_{dep} = 450V$


- → no benefit from charge sharing (single pixel clusters)
- → degradation in spatial resolution

1. Data loss mechanism

High rate tests and simulation of the Pixel ROC have shown inefficiency of the data transfer mainly due to the *buffer limitation* and the *dead time* of the ROC read out while transferring data to the TBM.

For Luminosity: 1 x 10³⁴ cm⁻²sec⁻¹

Radii = 11 cm / 7 cm / 4 cm layer

Total data loss @ L1A =100kHz

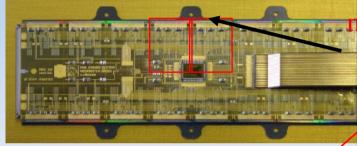
0.8%

1.2%

3.8%

This is suitable for LHC luminosity BUT improvements are needed for inner layers for Phase 1 ---> 10%!

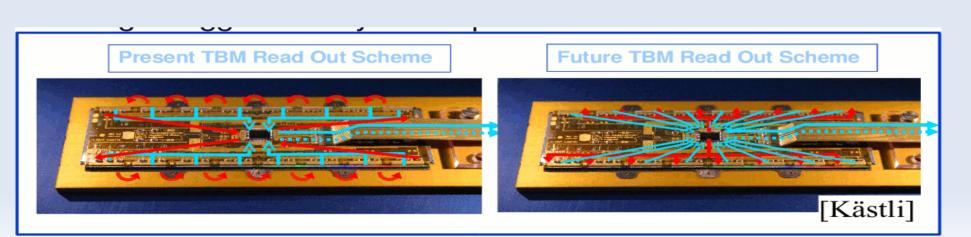
→ READOUT Session



Data loss possible solutions

For 2013 upgrade: Improve rate capability and the module has to be fully compatible with

present mechanics.

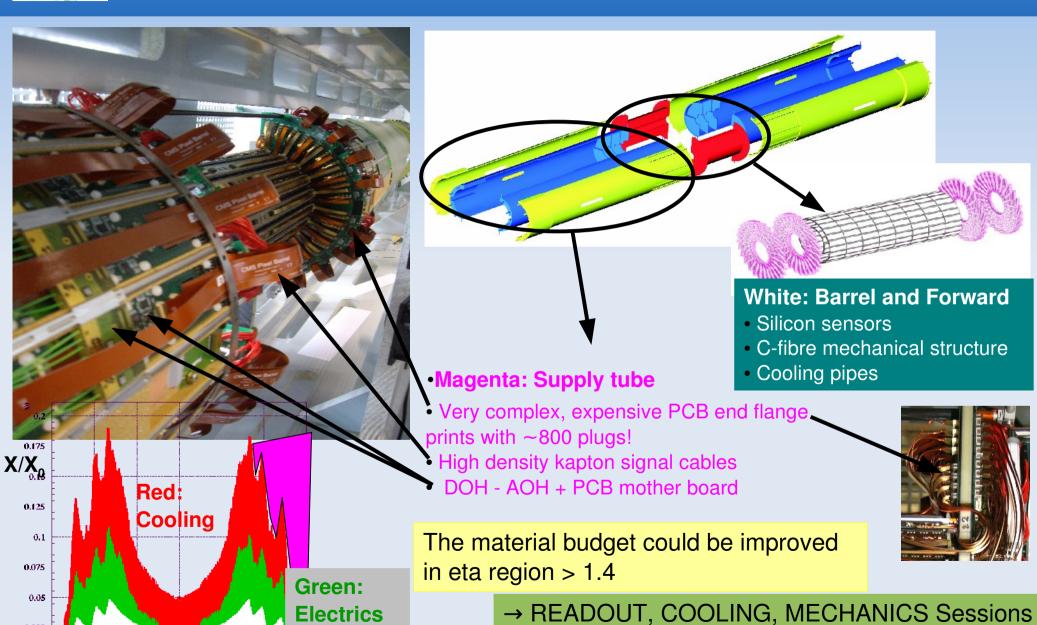


new ROC size

(1)**modify the ROC -->** doubling the buffer size, preserve buffer history.

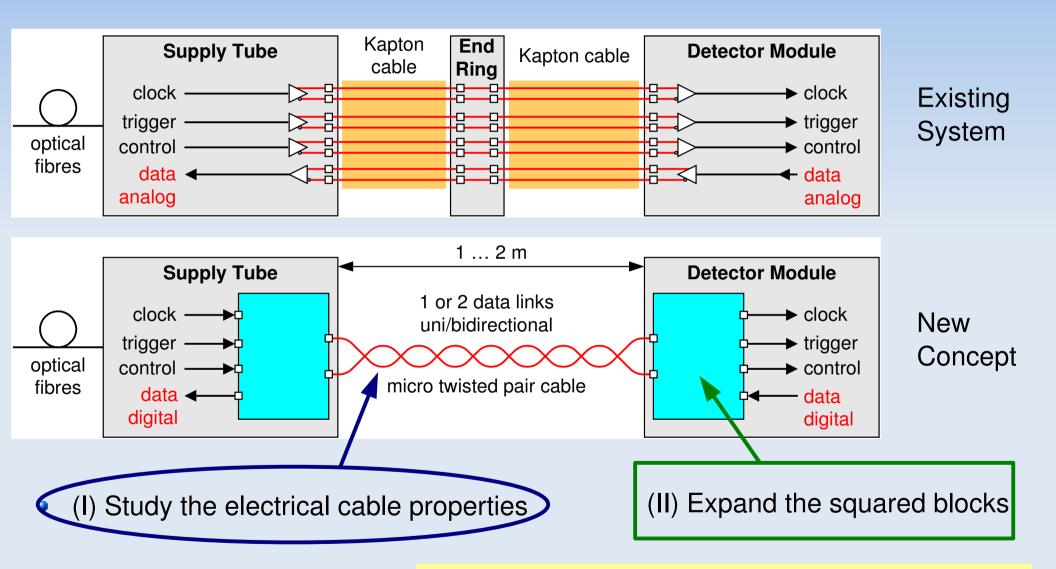
- 0.25µm technology just possible --> H. C. Kästli

(2) possibly new **TBM** with parallel ROC readout



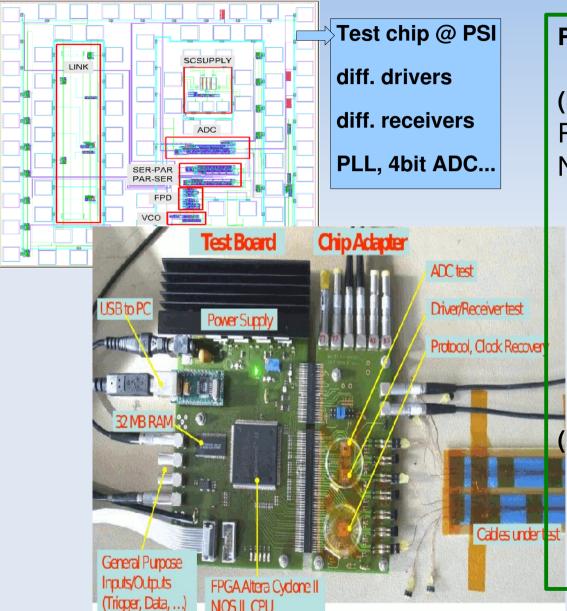
0.025

2. Material budget contributions



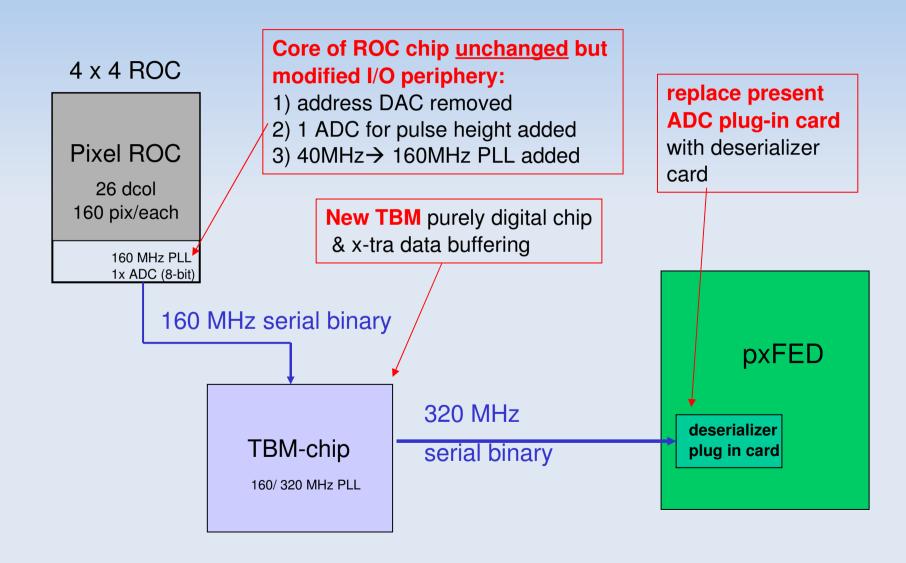
2013 Pixel Replacement/Upgrade, CERN 09-10-08

Idea for saving the material budget at high eta: serial data link



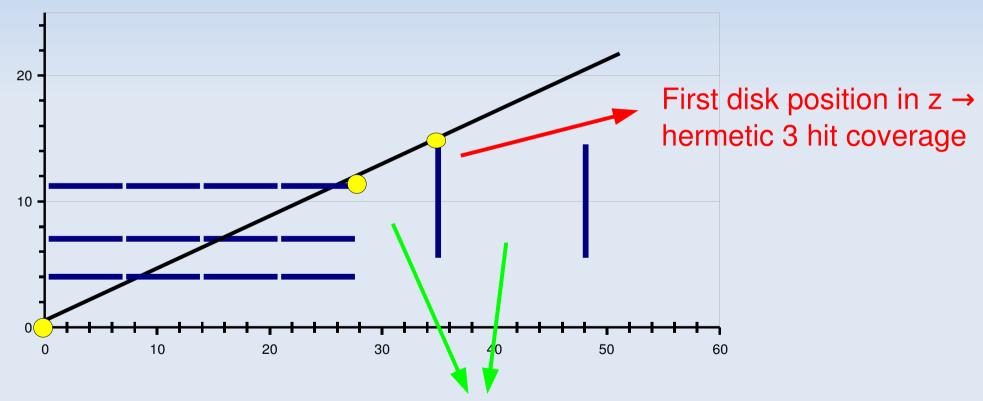
Beat Meier, PSI. TWEPP Conference September 2008

Test System

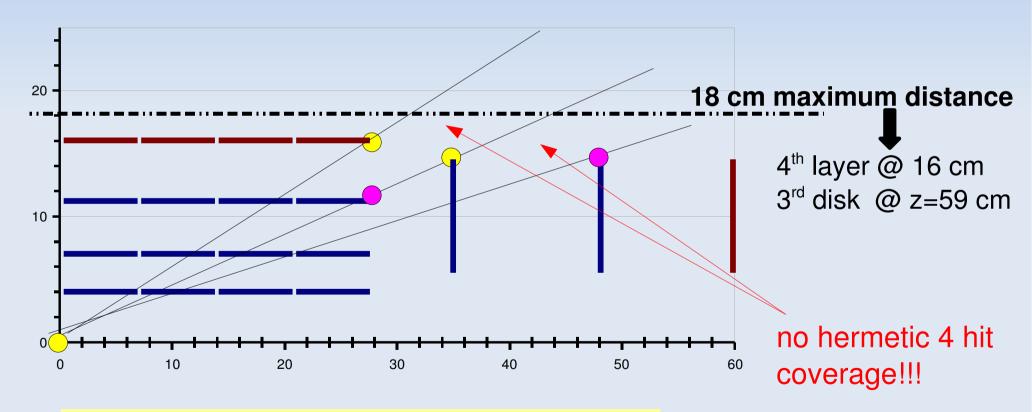

R&D plan:

- (I) Cable characterization, Beat and PIRE students: Sandra, Tony, David, Nick,
 - impedance
 - signal loss
 - SPICE, ATLC simulations
 - signal quality
 - bit error rate
 - cross talk
 - high frequency transmission
- (II) New digital protocol implementation:
 - test PLL clock recovery
 - test PLL clock multiplier
 - test of the ADC (Irakli)
 - implement the protocol (Samvel)

ROC and TBM changes for high speed digital read out

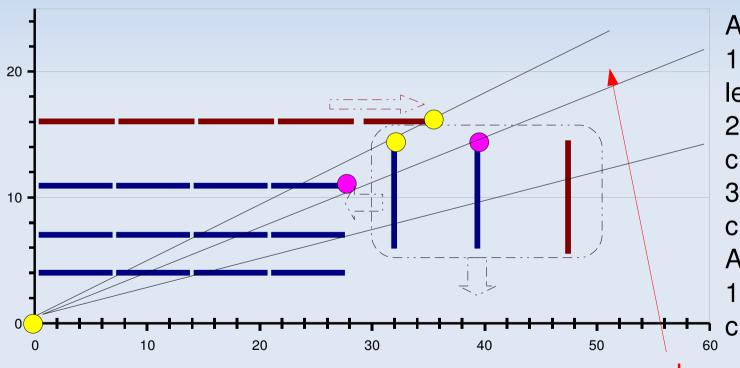


Some geometrical considerations: The **present** design: 3 barrel layers 2 disks



Portcards → minimum possible distance between barrel and first disk and between the disks

Some geometrical considerations: The **new** design: 4 barrel layers 3 disks



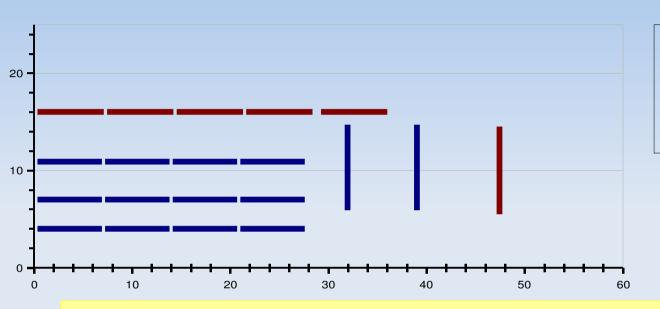
How can we acheive hermetic 4 hit coverage?

Some geometrical considerations: The **new** design: 4 barrel layers 3 disks

ALIGN the

- 1. Increase the 4th layer length by ~5cm
- 2. move the disks closer to beampipe
- 3. move the disks closer to barrel

ALIGN the •


1. move the 2nd disk

closer to first

hermetic 4 hit coverage acheived!!!

- VERY IMPORTANT: all existing services must be reused (cables, fibers, cooling)
 - -Z

- New 4 layer geometry & mechanical design!
- All the services for a 3rd disk are in place.
- To populate the 4th barrel layer only possible if:
 - (1) have DC-DC step down converters to bring more power through cables
 - (2) high speed links
 - (3) have CO₂ cooling

- → MECHANICS & GEOMETRY,
- → POWER & CABLE
- → COOLING Sessions

Scenarios for 2013 replacement/upgrade

	<u>Option</u>	Layer/Radii	<u>Modules</u>	Cooling	Pixel ROC	Readout	<u>Power</u>
as 2008	0	4, 7, 11cm	768	C ₆ F ₁₄	PS46 as now	analog 40MHz	as now
	1	4, 7, 11cm	768	C ₆ F ₁₄	2x buffers	analog 40MHz	as now
	2	4, 7, 11cm	768	CO ₂	2x buffers	analog 40MHz	as now
	3	4, 7, 11cm	768	CO ₂	2x buffers	analog 40MHz μ -tw-pairs	as now
	4	4, 7, 11cm	768	CO ₂	2xbuffer, ADC 160MHz serial	digital 320MHz μ -tw-pairs	as now
	5	4, 7, 11, 16cm	1428	CO ₂	2xbuffer, ADC 160MHz serial	digital 640 MHz μ -tw-pairs	DC-DC new PS

R. Horisberger, SLHC meeting at CERN 21/05/08

Scenarios for 2013 replacement/upgrade

<u>C</u>	<u>Option</u>	<u>Weight</u>	<x₀ gain=""></x₀>	Start Date	<u>Costs</u>	<u>Comments</u>
as 2008	0	3921 g	1	Aug 10	4.5 MCHF	ROC wafers exist
	1	3921 g	1	Nov 09	5.0 MCHF	new ROC wafers
	2	2274 g	1.7	Nov 09	5.4 MCHF	0.4 MCHF for CO ₂ plant
	3	1624 g	2.4	Nov 09	5.4 MCHF	
	4	1267 g	3.1	Dec 08	5.9 MCHF	new ROC & TBM & HDI mod. pxFED & pxFEC
	5	~ 2400 g estimate	~1.6	not possible for 2013	~9.8 MCHF +0.4 MCHF	DC-DC converters new LV Power Supplies

(R. Horisberger, SLHC meeting at CERN 21/05/08)

Questions:

CABLES / MECHANICS / COOLING / MODULES:

- CO₂ cooling possible with CMS piping ?
- Can we define a long term 4 layer geometry for 2018?
- Ultralight mechanics for 2013 already?
- Are we able to rebuild first 3 layers of new mechanics and geometry for 2013?

SENSOR:

- n+/n or n+/p technology?
- DOFZ or Mcz substrates?
- different gaps for reducing the interpixel capacitance?
- safer guard ring structures?
- sensor order needs to be placed by August 2010

Questions

READOUT_PART1:

- When do we know how the machine develops?
- Do we have time and manpower to upgrade the electronics to improve the inefficiencies at higher rates in case of 2x10³⁴ luminosity?
- Do we need to modify the ROC (buffer size, rebuffer)?
- Ready with design for new ROC by Oct. 2009?

READOUT_PART2:

- Fabricate and connectorize 16 micro twisted pair, how is the crosstalk?
- Can we use as a backup solution for an analog readout?
- How can increase readout speed for 4 layer system?
 - → 80MHz analog readout?
 - → 160MHz/320MHz digital readout? Decision when?
- AOH performance in digital transmission? Results when?
- AOHs rebuilt for 2013 who? (No spares & I_{bias} increases with rad. damage)