AOH replacement analog optical hybrid modification of the TkAOH 6 lasers/fibers, 2 LLD, 2 xALT barrel: 192 AOH, 1152 channels ## motivation for replacement - •almost no spares exist (bpix ~10, some of which need repair) - •current design prone to mechanical damage - •re-using existing AOHs for a new detector risky/not very practical - other issues - radiation damage (increase of bias current/ power) - •long pigtails not appropriate for new geometry - •digital transmission? ## AOH radiation damage Probably still functional after a few year of 2E34 (assuming 0.6E14 cm⁻² / y @ 1E34) significantly increased currents Fig. 5. Typical changes in laser L-I characteristic, threshold increase and efficiency loss, caused by neutron damage from a fluence of 5×10^{14} n/cm²(~ 20 MeV) accumulated over 7 h at 20 °C. Shorter pigtails / splice connection preferred when AOHs move to higher z ## Replacement man-power estimate | Jobs to do: | Man month | |--|-----------| | Buy laser chip wafer | 1 | | test set up for ALT chips | 1 | | test & select ALT chips | 1 | | evaluate company for fibre-laser-Si-plate assembly | 2 | | organize production of assemblies | 2 | | test laser driver chips LLD | 2 | | test irradiations of preseries of assemblies | 2 | | coordinate & redesing of new AOH PCB's | 4 | | CAD layout and fabrication of AOH PCB's | 4 | | fabricate & quality control of hybridized AOH boards | 6 | | final acceptance tests of AOH's & data base manage | ment 3 | | repair (organize etc.) of bad or broken AOH's | 2 | | | 30 | Non-negligbile effort