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CO, Literature Search

Looked at 30+ journal papers

Existing hydrofluorocarbon (HFC) refrigerants
have global warming concerns - may be
phased out

Researchers investigating CO, for “comfort
cooling” applications last 10 years

Initial CO, systems less efficient than R22,

R134a, and R410A systems
Researchers looking for cycle improvements
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CO, Literature Search

« Evaporator design in particular is of
interest to researchers (and CMS)

— Micro-channel tubes typical configuration
— Significant amount of experimental data

Manifold

- Haat transtar tube
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CO, Literature Search

» Existing two-phase correlations work poorly
based on experimental results

— High vapor density, very low surface tension (10x),
high vapor viscosity, low liquid viscosity compared
to HFCs

— CO9 film coefficient 2-3x greater (good!)

— CO9 dryout at much lower vapor qualities (bad!)
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CO, Literature Search

* Two papers from J.R. Thome in 2008

» Updated past models based on entire CO,
database in the open literature
— Flow regime map correlations
— Heat transfer correlations
— Pressure drop correlations

* Currently best predictive models, still ~25%
error which is typical for two-phase flow
correlations applicable over a wide range
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Flow Regime Example
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Computer Model Developed

« Based on Thome’s 2008 mechanistic
correlations

 Used EES numerical solver which has all
required CO, fluid properties built in

* Tube length divided into 10 computational
sections to account for vapor growth and
property variation

« Currently 563 equations! (of course that
counts repeated equations)
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Model inputs

* One tube feeding 3 half disks in series
— 15 W/blade, 12 blades per half disk, total 540 W

 Tube follows the OD of each half disk

« Smallest ID tube workable in the model

— 24 mm OD/2.21 mm ID SS tube from Eagle
Stainless

— We have some experience brazing very small
tubing including capillary tubing using VCR
connections

— 329 bar max pressure per piping code for this tube
size - CO, Psat @ 30 C is 72 bar
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Quality, Void Fraction, and Film Coefficient
2.2 mm ID tube feeding 3 half disks in series
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Axial Temperature and Pressure
2.2 mm ID tube feeding 3 half disks in series
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Computer model

Typically we'd design a cooling system with
larger safety margins

Would not consider a tube near dryout like
the 2.2 mm ID tube

Rigorous thermal testing would be required to
use such a tube

What kind of margin are we comfortable with”?

Next slides show a 3 mm ID / 3.76 mm OD
tube (254 bar P, _,) and its larger cooling
margin
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Quality, Void Fraction - Non-dimensional

Quality, Void Fraction, and Film Coefficient
3.0 mm ID tube feeding 3 half disks in series
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Axial Temperature and Pressure
3.0 mm ID tube feeding 3 half disks in series
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Future Work

* Verify computer model and optimize tube
diameter, flow rate, inlet temperature

« Work with CM Lei to thermally link tube to
blades

* Expand piping program to include
supply/return tubing, pump, chiller, etc.

« Select components for flow tests at FNAL,
chiller, pump, heat exchanger
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Issues/Questions

* Supply 16 mm OD / 50 ft. long Cu tube
is only rated for a max CO,, saturation

pressure per B31.3 corresponding to 18
C.

* Do the supply/return tubes thermally
communicate with the “180 tube
bundle?”

* Must the pump and chiller be in the
collision hall?
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