Power cables

Status & Constraints

Current Situation

3 layers of BPIX served by 64 MSC and 8 AUX cables

Max. current: 4.5A Vana; 9A Vdig per cable (12 modules)

1 cable channel per quadrant of BPIX

Voltage drop (44m): 1V + 1V (return)

Power loss: 27 W $\rightarrow \approx$ 10 W/m in cable channel

Single conductor: $R=0.2 \Omega$ (44m)

What's the heat load in the channels now?

Upgraded BPIX (SLHC)

Assumptions: full SLHC luminosity 10³⁵ cm-² s-¹

max. irradiation of ALL 4 layers

ROC current @2.5V: I = 560 + 450 + 440 + 570 = 2020 A

L1 L2 L3 L4

→ 500A for one quadrant (= single cable channel)

16 MSC cables available with 3 current loops each (10A)

Voltage drop (44m): 2V + 2V (return)

 \rightarrow 120 W/cable \rightarrow \rightarrow 44 W/m load on cable channel

For cable channel PP1 \rightarrow PP0: with MSC a 3mm²: 58W/m @ worse cooling!

Conclusion

With existing channels/cables direct 2.5 V supply seems impossible because of large power losses with insufficient cooling.

→ Use higher voltage supply and divide down at the detector (supply tube)

Oct. 9, 2008