Update on RooStatsCms

Grégory Schott Danilo Piparo Günter Quast

Universität Karlsruhe

RooStatsCms status → *current global status is "production"*

- Intuitive model "factory"
 - Build the analysis model from a text configuration file "datacard"
 - Datacard also describe nuisance parameters (and correlations)
 - Building a combined model for the combined analysis
- Outputs a standard RooFit PDF describing the analysis
 Remember what parts are signal and background contributions
- Statistical methods distributed in RooStatsKarlsruhe (public since March'08)
- Implementation of nuisance parameters and correlations completed*
 - Can be marginalized or profiled
- Statistical methods:
 - LimitCalculator (CLB, CLSB, CLS)
 - PLScan (profile likelihood)
 - FCCalculator (fully frequentist approach) validation to complete
 - Bayesian approach and Markov chains being investigated
 * strong implementation, tested and used by CMS analyses

completed*

completed*

- Batch friendly: decomposition in sub-jobs; results stored in ROOT files
 - Results can be merged and exploited by results classes

You will find in the backups applications to CMS analyses

Reproducing CMS physics TDR significances

VALIDATIONS

- one of the validation and X-check we are doing
- other ones being:
 - comparison to other statistical codes used in CMS
 - comparison to classes in ROOT (TLimit, TFeldmanCousins, ...)
 - CDF single-top statistical package "Bill"
- CL_B, CL_{SB} and CL_S in the VBF H → ττ analysis

PRODUCTION USAGE

- significance using CLB
- upper-limits on σH / σHSM using CLs
- production of LEP- and Tevatron- like plots showing the results
- those results have been approved yesterday by the CMS collaboration
- Comparison to the profile likelihood approach in this analysis
 - over-coverage of upper-limits with low signal
 - proper coverage with larger signal
- Application to other CMS analyses
 - not in backups (non-public CMS results)
 - regular reports to CMS Higgs WG: come hear us to keep up-to-date!
 - strong interrest by other CMS working groups

RooStatsKarlsruhe Class Index

C|F|L|M|N|P|S

C

Constraint ConstrBlock2

ConstrBlock3 ConstrBlockArray FCCalculator FCResults

L

LEPBandPlot

LikelihoodCalculator

LimitCalculator LimitPlot

LimitResults

M

Minus2LnQCalculator

Ν

NLLPenalty

Р

PdfCombiner PLScan PLScanPlot PLScanResults

S

StatisticalMethod StatisticalPlot

RooStatsKarlsruhe Class Index

C|F|L|M|N|P|S

С

Constraint ConstrBlock2

ConstrBlock3 ConstrBlockArray

FCCalculator FCResults

LEPBandPlot

LikelihoodCalculator

LimitCalculator

LimitPlot

LimitResults

М

Minus2LnQCalculator

Ν

NLLPenalty

Р

+

PdfCombiner **PLScan**

PLScanPlot PLScanResults

S

StatisticalMethod StatisticalPlot

Statistical Methods - Mother: Statistical Method

LimitCalculator

PLScan

FCCalculator

Job results collection from batch system

Statistical Results – Mother: Statistical Result

LimitResults

PLScanResults

FCResults

Statistical Plots – Mother: Statistical Plot

LimitPlot

PLScanPlot (add also FC curves)

Constraints Mother: NLLPenalty.cc

Constraint.cc ConstrBlock2.cc ConstrBlock3.cc

ConstrBlockArray.cc

LEPBandPlot

ExclusionBandPlot

Conclusion

- RooStatsCms is in production phase: used for CMS analysis results
 - used by the VBF H $\rightarrow \tau\tau$ analysis: approved by CMS yesterday
 - some other CMS analyses using the tool as well
 - we provide user support within CMS to use the tool
 - documentation (installation, methods, usage), lots of examples, doxygen-style comments of classes methods and members http://www-ekp.physik.uni-karlsruhe.de/~RooStatsKarlsruhe
 - workshop with hands-on-exercises in June'08 (another one planned)
- Limited manpower (responsabilities for T1-FZK, Higgs, QCD analyses)
 - Need to set priorities:
 - is now on doing a combination of the CMS Higgs analyses (in October)
- Worries with RooStats related to manpower and organizational structures
 - technical maintenance of such a package
 - how to make decisions on contributions to go in
 - test and validation + release management

BACKUPS

All statistics methods based on the likelihood function build using RooFit

- Build the analysis model(s) using RooStatsCms
- Number counting analysis $L(N; n_s, n_b) = \frac{e^{-(n_s + n_b)}(n_s + n_b)^N}{N!}$
- Analysis using PDFs $L(x; n_s, n_b, \theta) = \frac{e^{-(n_s + n_b)}(n_s + n_b)^N}{N!} \prod_{i=1}^N n_s f_s(x, \theta) + n_b f_b(x, \theta)$
- Combination of analyses:
 - Simultaneously apply to the data of each analysis its likelihood function
- Vary nuisance parameters in toy-MC experiments
- Generate toy data samples
- Apply fit constraints (if needed), add to the log L a term:
 for correlated gaussians: logL_P ~ 0.5·(m-m₀)^T · V⁻¹ · (m-m₀), V is correlation matrix
 other types of nuisance parameter shapes possible
- Compute the likelihood over that data sample (with or without fit)

The "CLs" technique

- The name "CL_s": just a part of the method
- Used at LEP and Tevatron
- Idea: separation of hypotheses analysing distributions of likelihood functions ratios
- Variable $Q=L_{s+b}/L_b$ with L_{s+b} , L_b likelihoods in the sig+bkg and bkg only hypotheses

Treatment of systematics:

For every toy MC experiment, before the generation of the toy dataset, parameters affected by systematics are properly fluctuated.

Distributions built with toy MC experiments

The "CLs" technique – Significance

- CL_B: background CL, measure the compatibility of the experiment with the B-only hypothesis
- 1 CL_B: probability for a B-only experiment to give a more S+B-like likelihood ratio than the observed one
- CL_{S+B}: measure the compatibility of the experiment with the S+B hypothesis
 if CL is small (< 5%) the S+B hypothesis can be excluded at more than 95%
 CL but it does not mean that the signal hypothesis is excluded at that level
- CL_s: the signal significance is a-priori defined to be: CL_s = CL_{s+B} / CL_B

H→ττ: Significance

• Significance calculated for the $H \rightarrow \tau \tau$ analysis using CLb

- In this case significance does not tell us much.
- The question becomes:

"Which production cross section can I exclude with the data I have?"

The "CLs" technique – Exclusion

- Method used upon review committee request
- Assume to observe only background
- Amplify the SM production cross section by a factor necessary to obtain CL_s=0.05
 - \rightarrow "95% exclusion"

- Assume to observe $N_b + n \cdot sqrt(N_h)$, where n=2,1,-1,-2 for the -2,-1,1,2 sigma band border respectively
- Systematics taken into account in distributions of -2lnQ

Other plots

The "profile likelihood" technique

- 1) Each nuisance parameter x, becomes a fit parameter
- 2) Add to the combined -log(likelihood) a term ½ (x-x_m)^T cov · (x-x_m) to take into account constraints (in gaussian case)

 (x_m and cov represents the vector of external constraints and their correlated errors)
- 3) Vary the signal yield and minimise w.r.t. all other parameters => thus obtaining the "profile likelihood"

Signal significance: S = sqrt (2 lnQ) = sqrt (2 ln L_B – 2 ln L_{S+B})

Profile likelihood – limits and coverage

- To compare with the $H\rightarrow \tau\tau$ (no systematics here)
- Profile the likelihood function and search for the upper-limit using Δlog L
- Much faster (1 single fit, i.e. a minute or two)
- With profile likelihood the 95% CL UL is 10.71 events = 6.7 SM cross section
 - to compare to ~5.5 with CL_s
- Test of coverage:
 - For low signal yields, the profile likelihood method largely over-covers
 - The method works well for large signal (and luminosity)

Combination of analyses

- Significance sqrt(2lnQ) curves for various analyses.
- The CMS PTDR studies are compared with the one obtained with RSC

