
Configuring & Managing 
Web Services for

Joachim Flammer
Integration Team

EGEE is a project funded by the European Union under contract IST-2003-508833

JRA1 all-hands-meeting, Padova 15.11.2004

www.eu-egee.org



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 2

Contents

• Management for web services
• Configuration

… the Tomcat approach
… the JMX approach

• JMX in a nutshell
• JMX for gLite
• gLiteService and gLiteManager
• gLiteService in action (Demo)
• Summary



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 3

Managing Web Services
Web services have several management functionalities that are common to all of them

• Control of the web service
Configuration
change web service dynamically

• Lifecycle-specific requirements
start & stop
check if service is alive (pinging)
Produce load statistics

• Request of service information
to describe how many messages it is processing at a given time
to display its identification, its current version number
to display its current set of dependencies

• Manage the performance of web services (goes together with testing)
response time
uptime
management tool should take the quality of service as input
Metering the usage of web services: log number of messages from different users

• Debugging of services
Make internals visible for debugging, finding of bottlenecks
request that the service sends any error message to a named target or file
SOAP message monitoring: see incoming/outgoing messages
SOAP message logging



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 4

Requirements for Web Services 

• Several common functionalities are provided by container 
(e.g. tomcat)

Some of the functionality are nice to use
• e.g. starting/stopping a web service via the tomcat manager

Some of the functionality is not enough for us
• configuration is only static

Some functionalities might not be provided at all

• We have to provide 
a common approach to the management of web services
use available techniques where applicable
extend techniques where necessary



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 5

Configuration – the Tomcat approach

• For Tomcat configuration is done 
via the context of each web service
application can get information via JNDI

• The pros and cons are
standard approach ☺
pre-configuration is done by tomcat ☺
Tomcat JNDI is read only (Tomcat emulates JNDI) 
No dynamic configuration 
You cannot get the configuration information from service 
You cannot get the configuration information from central places



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 6

Configuration – the JMX approach

• JMX – Java Management extensions
Standard designed for enabling resource management of/with Java applications
Extension of Java following standard specification

• Specification within the Java Community Process (JCP) as a Java Submission Request 
(JSR3, JSR77, JSR xx Remote)

First implementations from 1998
Several active implementations – commercial and open source

• Sun JDMK
• MX4J
• …

Each implementation follows the standard and gives some extras
Integrated in SUN Java 1.5
Accepted standard in industry - used in several commercial products

• HP openview
• IBM Websphere
• ….

Enables you to do dynamic configuration
Enables you to retrieve configuration information remotely
Enables you to read configuration from different places
…. much more like monitoring etc. …

…… and also TOMCAT uses it for its internal configuration …and also TOMCAT uses it for its internal configuration …



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 7

Java VM

JMX in a nutshell: Overview

MBean ServerMBean Server

Managed resourceManaged resource Managed resourceManaged resource

MBeanMBean MBeanMBean MBeanMBean

Agent
Service
Agent

Service
Agent

Service
Agent

Service

Management
application

Management
application

AdapterAdapter AdapterAdapter Server
Connector
Server

Connector

Client
connector
Client

connector

InstrumentationInstrumentation
LayerLayer

AgentAgent
LayerLayer

Distributed ServiceDistributed Service
LayerLayer



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 8

• How to instrument your application
Specify the instrumentation you want to have/make available

• MBean is a Managed BeanManaged Bean
Somehow similar to regular JavaBeans

• Can be easily added to an existing application/class
• An easy example: your service

• There is (of course) much more to MBeans:
Dynamic Beans (that change their interface at runtime)
automatic loading of MBeans etc.

class Service {

[…]

protected String name;

public String getName(){
return Name;

}

public void setName(String name){
this.name = name;

}

public bool updateService(){
// do something
return true

}

[…]
}

class Service {

[…]

protected String name;

public String getName(){
return Name;

}

public void setName(String name){
this.name = name;

}

public bool updateService(){
// do something
return true

}

[…]
}

class Service implements ServiceMBean {

[…]

protected String name;

public String getName(){
return Name;

}

public void setName(String name){
this.name = name;

}

public bool updateService(){
// do something
return true

}

[…]
}

class Service implements implements ServiceMBeanServiceMBean {

[…]

protected String name;

public String getName(){
return Name;

}

public void setName(String name){
this.name = name;

}

public bool updateService(){
// do something
return true

}

[…]
}

The instrumentation layer: MBeans

public interface ServiceMBean{

String getName();
void setName(String name);
bool updateService();

}

public interface ServiceMBean{

String getName();
void setName(String name);
bool updateService();

}



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 9

The agent layer: MBeanServer

•• MBeanServerMBeanServer
is central object to

• contain MBeans
• access MBeans
• manipulate MBeans

each server has a domain name to identify him
you can find/use other servers in your Java Virtual Machine

• Connecting MBeans
register MBean instances in the MBean server

• create the MBean yourself or let the server create it for you
• each MBean is registered using a unique name 
• name contains: domainName:keyValueList

e.g. glite:service=testService,port=8080

• Interacting with MBean
Get / set values in MBeans
Invoke methods of MBeans

• And there is much more …
Get information about MBean
Query for a set of MBeans
Notifications of changes
Monitor MBeans

// creating the MBeanServer
MBeanServer mbs = MBeanServerFactory.createMBeanServer(“glite”);

// querying for an existing MBeanServer in the JVM
List srvList = MBeanServerFactory.findMBeanServer(null);
MBeanServer mbs2 = (MBeanServer) srvList.get(0);

// registering your MBean
Service myService = new Service()
ObjectName myServiceON = new ObjectName(“glite:type=service,port=8080”);
mbs.registerMBean(myService, myServiceON);
mbs.registerMBean(new Service(), new ObjectName(“glite:type=service,port=8090”);

// manipulating MBeans in a server
String name = mbs.getAttribute(myServiceON,”name”);
Attribute attribute = new Attribute(“name”, new String(“gliteService”));
mbs.setAttribute(myServiceON, attribute);
mbs.invoke(myServiceON, “updateService”, null, null);

// creating the MBeanServer
MBeanServer mbs = MBeanServerFactory.createMBeanServer(“glite”);

// querying for an existing MBeanServer in the JVM
List srvList = MBeanServerFactory.findMBeanServer(null);
MBeanServer mbs2 = (MBeanServer) srvList.get(0);

// registering your MBean
Service myService = new Service()
ObjectName myServiceON = new ObjectName(“glite:type=service,port=8080”);
mbs.registerMBean(myService, myServiceON);
mbs.registerMBean(new Service(), new ObjectName(“glite:type=service,port=8090”);

// manipulating MBeans in a server
String name = mbs.getAttribute(myServiceON,”name”);
Attribute attribute = new Attribute(“name”, new String(“gliteService”));
mbs.setAttribute(myServiceON, attribute);
mbs.invoke(myServiceON, “updateService”, null, null);



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 10

The distributed layer: Adaptors & Connectors

• All MBeanServer methods are nice – but how do you connect from 
outside the JVM?

Adaptors & Connectors

•• AdaptorsAdaptors
Adaptor is an MBean that listens on a particular port and speaks a particular 
protocol
Example: HTTP adaptor (see Demo later on)

•• ConnectorsConnectors
Connector is an MBean that can co-operate with a peer on a client machine
Example: RMI connector (see Demo later on)

• You can register the adaptors/connectors you need/want to support
• All adaptors/connectors are MBeans and can be manipulated like other 

MBeans



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 11

Stay informed: notifications

• You can be informed when MBeans are changed
• MBean can be a source for notifications

listen to changes on MBeans by subscribing to notification
you can apply filters to notifications

• Information stored in each notification
Type (a String) used for filtering
SequenceNumber (integer)
TimeStamp
UserData and Message
Source (to identify the generating MBean)



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 12

Tomcat Container
Service

Service

JMX for gLite

gLite
Service

service
logic

Tomcat
manager

Service 
specific
WSDL

common
WSDL

Service
WSDL gLite Manager

gLite
Service

service
logic

Service
MBean

Configuration
MBean

Configuration
MBean

Service 
specific
WSDL

common
WSDL

Service
WSDL

adaptor

connector

M
an

ag
em

en
t A

pp
lic

at
io

n

MBean
Server



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 13

Implementation -
gLiteService and gLiteManager

• We propose:
gLiteServicegLiteService

Implements the common aspects we want to have for each web service
Generic WSDL interface for

Version number
Ping interface
….

Common handling of configuration
Each gLite web service will extend this base gLiteService class to 
implement its functionality 
gLiteService can reuse/extend functionalities provided by container

gLiteManagergLiteManager
one (lightweight) instance per web server to handle generic stuff
contains MBeanServer



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 14

Implementation -
Some practical details

• What do you have to do to implement it?
1. Your service extends abstract gLiteService

• Implement the abstract functions
– String getServiceName() 
– void reconfigureDynamically()   

(if notifications are included – this will probably go away)
– …

• Other methods depend on which common functionalities we want to see
•• Interface needs to be finalized !!!Interface needs to be finalized !!!

2. Implement retrieval of configuration values to configure your values
see next slide

3. Implement Reconfiguration
dynamic reconfiguration via gLiteService method or via notification
static reconfiguration via gLiteManager (nothing to be done for you)
Put as much as possible to dynamic reconfiguration

4. Add management to your classes (if you want …)
if you want to have more control over your applications: add your own MBeans
void registerMBean(Object object, String name);
see next slide



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 15

Example -
Configuring a service

// get the “basic” DataSource from JNDI
try {

Context initCtx = new InitialContext();
Context envCtx = (Context) initCtx.lookup("glite");
m_dataSource = (DataSource) envCtx.lookup(m_db_pool_name);

} catch (NamingException e) {
m_log.error("Got naming error trying to fetch pool: " + pool, e);
throw new DBException();

}

// configure the DataSource with JMX
try{

List srvList = MBeanServerFactory.findMBeanServer(null);
for (int i=0; i<srvList.siz(); i++){

if (((MBeanServer) srvList.get(i)).getDefaultDomain().compareTo("glite") == 0) {
mbeanServer = (MBeanServer) srvList.get(i);
break;

}
}

} catch (Exception e) {
m_log.error("Error in querying for MBeanServer: ", e);

}

try{
ObjectName configMBeanName = new ObjectName(“myService:type:Configuration”);
((BasicDataSource) m_dataSource).setPassword((String) mbeanServer.getAttribute(configMBeanName, 

"password"));
[…]

} catch (Exception e) {
m_log.error("Error while configuring DataSource: " , e);

}



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 16

Example -
put manageability to your classes

class DbConnection implements DbConnectionMBean{
…. // see MBean slide

}

class MyService extends gLiteService{
[…]
DbConnection dbConnection= new DbConnection;
registerMBean(dbConnection, “DatabaseConnection”);
[…]

}



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 17

Next steps

• Agree on implementation details
where to put the MBeanServer
general methods for each web service

• Choose adaptors, connectors …
How do we want to connect to the MBeanServer from outside

• HTTP
• RMI
• SOAP
• ….

• Security
How to make sure that only WE change the settings…
There exists security implementations for the different adaptors, connectors
Discussion with JRA3

• Discussion needs
Present implementation uses “application” scope for axis

is that acceptable ?
• Prepare a detailed description paper with interfaces etc.



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 18

gLite Configuration in action

• A little demo
data-catalog-service-meta web service

• Demo contains
Reading configuration values from configuration files
Configuring the database connection
Dynamic reconfiguration
Static reconfiguration
Accessing the configuration from outside via different connectors
Monitoring

• Demo contains simplified version
everything in one service
no notification included yet



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 19

Summary

• Management and configuration are very important aspects for web 
services

• Tomcat offers way to manage/configure service
We can (re)use part of the functionality
not enough functionality (dynamic, central reconfiguration, ….)

• Java Management Extensions (JMX) is the Java standard for 
management/configuration/control

• JMX offers
easy way to control our applications
the developers an easy way to understand what is going on in their 
application

• Next steps:
Agreement
Implementation details 



JRA1-all-hands- meeting - Joachim Flammer - Padova, 15.11.04  - 20

Links

• JMX@sun http://java.sun.com/products/JavaManagement/

• Open source JMX implementation
MX4J http://mx4j.sourceforge.net/

• JMX books
JMX in action

http://www.manning.com/sullins
JMX: Managing J2EE with Java Management extensions

http://www.samspublishing.com/title/0672322889
Java Management Extensions

http://www.oreilly.com/catalog/javamngext/
Java and JMX – Building manageable applications

http://www.awprofessional.com/title/0672324083


