
EGEE is a project funded by the European Union under contract IST-2003-508833

Installation and
configuration of gLite

services
Robert Harakaly, CERN

Integration Team

JRA1 All Hands Meeting, Padova, 15.11.2004

www.eu-egee.org

JRA1 All Hands Meeting, Padova, 15.11.2004 - 2

Contents

• Introduction
• Configuration management
• Service installation and set up

Demo

• C/C++ services & clients configuration

JRA1 All Hands Meeting, Padova, 15.11.2004 - 3

Problem

• We need to build an infrastructure supporting installation and
configuration under several constraints:

Multi-platform environment (Linux, MS Windows)
Multiple packaging systems (RPM, tgz, MSI, …)
Compatible with standard installation tools (apt, yum, MS Installer, etc.)
Compatible with installation/configuration systems (Quattor, SMS, etc.)
But we cannot depend on any of them and we need to allow manual
installation as well!

JRA1 All Hands Meeting, Padova, 15.11.2004 - 4

Configuration Management

JRA1 All Hands Meeting, Padova, 15.11.2004 - 5

Service

• We are using Service-based installation and configuration method
• The main building block is the Service: it is a set of components

providing a given functionality
From our point of view the term service has much wider scope than normal,
and we consider as a service not only the real services (glite-io-server, …),
but also the clients and utilities (CA certificates are regrouped in the security
service).

• A Service is always deployed as a simple unit
• Each service is described using an XML file called: Service

Description File (SDF)
• The SDF file contains all needed information about the service

the service components
the service dependencies
…

• The SDF is automatically created from templates by the build system

JRA1 All Hands Meeting, Padova, 15.11.2004 - 6

Service Description File (example)

An example of the service description file:

<service name="glite-io-client" version="1.2.3" release="1">
<description>
gLite IO-service client.

</description>
<components>
<component name="glite-data-io-base" version="1.1.0" age="1" build="1 "
arch="i386"/>

<component name="glite-data-io-quanta" version="1.1.0" age="1" build="1 "
arch="i386"/>

<component name="glite-data-io-client" version="1.1.0" age="1" build="1"
arch="i386"/>

<component name="glite-data-io-gss-auth" version="1.1.0" age="1" build="1 "
arch="i386"/>

<component name="glite-data-config-service" version="1.1.0" age="1" build="1"
arch="i386"/>

</components>
<dependencies>
<external name="glite-essentials-cpp" version="1.0.1" age="1_EGEE" arch="i386"/>
<external name="vdt_globus_essentials" version="VDT1.2.0rh9" age="1" arch="i386"/>
<external name="gpt" version="VDT1.2.0rh9" age="1 " arch="i386"/>

</dependencies>
</service>

JRA1 All Hands Meeting, Padova, 15.11.2004 - 7

Service Description File (example II)

• In addition to what was already mentioned, service description files
enable to define multi-role services:

<service name="glite-io-server">
<role name="fireman">

<components>
...
<component name="io-resolve-fireman"/>

</components>
</role>
<role name="fr">

<components>
...
<component name="io-resolve-fr"/>

</components>
</role>

</service>

JRA1 All Hands Meeting, Padova, 15.11.2004 - 8

Derived files

• To simplify the management service description, all
packaging and installation related scripts like .spec, glite
installation scripts, quattor templates are derived from the
service description file

JRA1 All Hands Meeting, Padova, 15.11.2004 - 9

Summary: gLite IO-service client.
Name: glite-io-client-service
Version: N20041025
Release:1
Copyright: EGEE Copyright
Vendor: EGEE
Group:
Prefix:/opt/glite
BuildArch:i386
Requires: glite-data-io-base, glite-data-io-quanta,
glite-data-io-client, glite-data-io-gss-auth,
glite-data-config-service, glite-essentials-cpp,
vdt_globus_essentials, gpt
BuiltRoot:
Source:

template pro_software_glite_io_client

Copyright (c) Members of the EGEE Collaboration. 2004
See http://eu-egee.org/partners/ for details on the copyright holders
For license conditions see the license file or http://eu-egee.org/license.html

glite-io-client Quattor template v. 0.2.0

Global dependencies
glite-io-client-service dependencies
"/software/packages"=pkg_repl("glite-essentials-cpp","1.0.1-1_EGEE","i386");
"/software/packages"=pkg_repl("vdt_globus_essentials","VDT1.2.0rh9-1","i386");
"/software/packages"=pkg_repl("gpt","VDT1.2.0rh9-1","i386");
glite-io-client-service RPMS
"/software/packages"=pkg_repl("glite-data-io-base","1.1.1-1","i386");
"/software/packages"=pkg_repl("glite-data-io-quanta","1.0.0-1","i386");
"/software/packages"=pkg_repl("glite-data-io-client","1.1.0-1","i386");
"/software/packages"=pkg_repl("glite-data-io-gss-auth","1.0.0-1","i386");
"/software/packages"=pkg_repl("glite-data-config-service","1.1.1-3","i386");
"/software/packages"=pkg_repl("glite-io-client-config","0.2.0-2","noarch");

Well known installer script:
#!/bin/sh
Copyright (c) Members of the EGEE Collaboration. 2004
See http://eu-egee.org/partners/ for details on the copyright holders
For license conditions see the license file or http://eu-egee.org/license.html
glite-io-client_installer v. 0.2.0
#
The glite-io-client_installer installs the gLite I\/O Client
#
Usage: glite-io-client_installer [-u|-v|--help]
-u uninstall
-v print version
--help print script usage info
Return codes: 0 - Ok
1 - if a file could not be downloaded
###
#Parse the RPMLIST to strip out the RPMS that are already installed
function parseRPMList(){

newRPMLIST=""
localRPMLIST=`rpm -qa`
for i in $RPMLIST
do

g=`echo $i | sed -e 's/\.i386\.rpm//g'`
g=`echo $g | sed -e 's/\.noarch\.rpm//g'`
if [-z "`echo $localRPMLIST | grep $g`"]; then

newRPMLIST="${newRPMLIST} $i"
else

echo "$i is already installed. It will be skipped."
fi

done

Service description file

sdf filesdf file

Service description file

- Generated automatically from the templates by the build system.

<service name="glite-io-client" version="1.2.3" release="1">
<description>

gLite IO-service client.
</description>
<components>

<component name="glite-data-io-base"
version="1.1.0" age="1" build="1" arch="i386"/>

<component name="glite-data-io-quanta"
version="1.1.0" age="1" build="1" arch="i386"/>

<component name="glite-data-io-client"
version="1.1.0" age="1" build="1" arch="i386"/>

<component name="glite-data-io-gss-auth"
version="1.1.0" age="1" build="1" arch="i386"/>

<component name="glite-data-config-service"
version="1.1.0" age="1" build="1" arch="i386"/>

</components>
<dependencies>

<external name="glite-essentials-cpp"
version="1.0.1" age="1_EGEE" arch="i386"/>

<external name="vdt_globus_essentials"
version="VDT1.2.0rh9" age="1" arch="i386"/>

<external name="gpt" version="VDT1.2.0rh9" age="1"
arch="i386"/>

</dependencies>
</service>

gLite
installer
script

gLite
installer
script.spec.spec

gLite installation utility

Multiplatform installation utility for gLite service/node installation. It is in the
design stage.

-utility providing higher installation and configuration comfort with built-in
tarball management (installation/uninstallation), online help, support of
multiple package download protocols, different installation tools, etc.

- Built-in environment checking and configuration

- Graphical user interface in the interactive mode

- uses directly the NDF/SDF files as a basic information for installation
process

- installs native packages (RPMs, MSI, …) or binary tarballs,

- supports installation using different tools like yum, apt, SMS …, or using
native built-in methodsQuattor

templates
Quattor

templates
gLiteInstallergLiteInstaller

JRA1 All Hands Meeting, Padova, 15.11.2004 - 10

Node

• In general, the main deployment units are the nodes.
• Node consist of the set of installed services and (possibly)

of some additional packages.
• Node is described by XML file called: Node Description File

(NDF)
• NDF file is built from a corresponding set of service

definition files.
Node can consist of:
• one service (LB), in that case the NDF can be identical to

the corresponding SDF
• more services (LB + WMS), the NDF is a join of SDF files of

LB service and WMS service
Use of NDF does not exclude the custom installations

JRA1 All Hands Meeting, Padova, 15.11.2004 - 11

Node Description file (example)
<node name="IO-FPS">
<description>

gLite data IO and FPS node
</description>
<services>

<service name="glite-io-server" version="1.2.3-5">
...

</service>
<service name="glite-fts">

...
</service>
<service name="glite-fps">

...
</service>

</services>
<depends>

<!-- CA set -->
</depends>

</node>

JRA1 All Hands Meeting, Padova, 15.11.2004 - 12

Service configuration file

• SDF and NDF files describe the services and their dependencies.
• They are mostly used during the installation process
• Service Configuration File contains the service configuration

parameters
• Configuration types:

Post-installation configuration: Environment setup needed after the
installation of the service create the working environment for the service
(creation of DBs, …) in future should shrink to a minimum
Service configuration: Configuration of the service at startup and at run-
time

Today the separation between these two types of configuration is fuzzy
since post-installation configuration creates also the configuration files
for the service.
We hope that the proposed configuration schema will clearly separate
these two types of configuration.

JRA1 All Hands Meeting, Padova, 15.11.2004 - 13

<service name="glite-io-client">

<parameters>

<io-client.Server value="lxb123.cern.ch"/>

<io-client.ServerPort value="23456"/>

<io-client.EncryptName value="true"/>

...

</parameters>

</service>

Service configuration file

JRA1 All Hands Meeting, Padova, 15.11.2004 - 14

Service configuration file II
<service name="IO-server">
<role name="fireman">

<parameters>
...
<firemanEndPoint value="http://lxb2024.cern.ch:8080/
org.glite.data.catalog-service-fr/services/
FiremanCatalog"/>

</parameters>
</role>
<role name="fr">

<parameters>
...
<replicaEndPoint value="http://lxb2024.cern.ch:8080/

org.glite.data.catalog-service-fr/services/
ReplicaCatalog"/>

<disableDelagation value="false"/>
</parameters>

</role>
</service>

JRA1 All Hands Meeting, Padova, 15.11.2004 - 15

Service configuration file III

Configuration parameters are defined for each used role.
Each service/role can contain definitions of multiple instances:

<service name="XYZ">
<instance name="instance1">

<!--instance1 parameters -->
</instance>
<instance name="instance2">

<!--instance2 parameters -->
</instance>

</service>

JRA1 All Hands Meeting, Padova, 15.11.2004 - 16

Configuration file validation

• XML Schema file is used for validation of the service
configuration file, configuration parameters documentation

• The goal is to minimize the configuration problems due to
typos, non-correct values in the production use.

• Three levels of validation to enable flexible development
Strict: Validation errors will cause that the configuration file will be
rejected
Loose validation: Parameters described in schema will be checked
as with strict validation but allows an usage of additional parameters
not described in schema
No validation: No validation of the configuration file

JRA1 All Hands Meeting, Padova, 15.11.2004 - 17

XML Schema

<schema>
…

<xs:element name=”io-client.ServerPort”>
<xs:annotation>

<xs:documentation>
TCP port number of gLite IO server

</xs:documentation>
</xs:annotation>
<attribute name=”value”>

<xs:simpleType>
<xs:restriction base=”xs:integer”>
<xs:minInclusive value=”1”/>
<xs:maxInclusive value=”65535”/>

</xs:restriction>
</xs:simpleType>

</attribute>
</xs:element>

…
</schema>

JRA1 All Hands Meeting, Padova, 15.11.2004 - 18

Service installation and set up

JRA1 All Hands Meeting, Padova, 15.11.2004 - 19

Service installation and configuration

• For installation and configuration a deployment module for a number of
services/nodes was created in the CVS

• A deployment module contains the service description file, service configuration
file and configuration scripts.

• The build system derives all necessary files from the SDF, publishes them on
the web page and packages the configuration file and scripts into the service
deployment package

• We provide two types of distribution packages:
RPMs
Binary tarballs

• Supported installation:
Installation scripts for RPMs and tarballs
Quattor based installation

Installation scripts and quattor templates are derived from the SDF by the build system.
Downloadable from the gLite web page

Manual installation using standard rpm utility
• Post-installation configuration

Using configuration scripts
Quattor configuration (should arrive soon)

JRA1 All Hands Meeting, Padova, 15.11.2004 - 20

Post Installation Configuration

• Configuration parameters described in the service
configuration file

• Configuration is done using Python modules
Each service (external, and internal) is represented by a Python
class
Enables reusing of service configuration (condor, globus, …)

• Configuration files/scripts location:
${GLITE_LOCATION}/etc/config

• glite-global.cfg.xml
• glite-<service>.cfg.xml

${GLITE_LOCATION}/etc/config/scripts
• Python configuration modules for each service

JRA1 All Hands Meeting, Padova, 15.11.2004 - 21

Configuration customization

• Possibility for the user to customize the gLite services
• Configuration order:

${GLITE_LOCATION}/etc/config/glite-<service>.cfg.xml
/etc/glite.conf
~/.glite/glite.conf
~/.glite/glite-<service>.cfg.xml

JRA1 All Hands Meeting, Padova, 15.11.2004 - 22

C/C++/Perl services and clients
configuration

JRA1 All Hands Meeting, Padova, 15.11.2004 - 23

C/C++/Perl services and clients
configuration

• Configuration based on the Service Configurator approach
• Service Configurator is designed as an internal part of the

service
• In some cases this approach is already (partially)

implemented (Tomcat, …) and the implementation is using
this functionality

• Role of the Service Configurator :
Hide OS dependent issues from the service (messaging, …)
Create an unique interface for the management of the services
Load service configuration and forward it to the service logic
Enable addition of the additional common functionality
(instrumentation) to the services, by providing an unique interface to it

JRA1 All Hands Meeting, Padova, 15.11.2004 - 24

Unique, OS independent
interface

Interfaces

OS Service
Configurator

Service
logic

Service

OS dependent signals

start
stop
init
reconfigure
info
status

Linux signals
MS Windows messages

start
stop
init
reconfigure
info
status

Reading configuration parameters

JRA1 All Hands Meeting, Padova, 15.11.2004 - 25

Interfaces II
C++ interface to be implemented in the service

/** Initialize the Component. Parameters passed during the
* Initialization are not supposed to change (static
* parameters) */
virtual int init(const Params& params) = 0;

/** Start the Component. This method is called to start the
* execution or restart it after a reconfiguration */
virtual int start() = 0;

/** Stop the Component. This method is called to stop the
* execution either is case of shutdown and in case of
* reconfiguration */
virtual int stop() = 0;

/** Reconfigure on the fly (dynamic parameters) the Component.*/
virtual int reconfigure(const Params& params) = 0;

/** Pause Component. Optional */
virtual int pause() = 0;

/** Resume Component. Optional */
virtual int resume() = 0;

/** Get service information */
virtual char *info() = 0;

/** Get service status */
virtual char *status() = 0;

JRA1 All Hands Meeting, Padova, 15.11.2004 - 26

Client configuration

• C/C++/Perl/Python and JAVA clients can use simplified interface from
the previous slide.

• C++ interface to implement in the client applications

/** Initialize the Component. Parameters

* passed during the Initialization */

virtual int init(const Params& params) = 0;

/** Reconfigure on the fly (dynamic parameters) the
Component.*/

virtual int reconfigure(const Params& params) = 0;

/** Get service information */

virtual char *info() = 0;

/** Get service status */

virtual char *status() = 0;

JRA1 All Hands Meeting, Padova, 15.11.2004 - 27

C++ service configuration demo

• The Service Configurator for C++ service demo will be
presented by Paolo after this presentation

• Since the proposition and the Paolo’s implementation were
developed in parallel, the general approach is the same,
but the implementation doesn’t follow exactly the presented
proposition

• From other side, the modification of implementation to
follow the presented proposition, is simple

JRA1 All Hands Meeting, Padova, 15.11.2004 - 28

Hot issues

• We need to have more information about how to
install/configure services:

• Post installation configuration
what actions are necessary?

• Service configuration
Which configuration parameters are valid/available
Complex parameter types: are there any? how to express them?

• Service description information
Service relationships: remote database connections, dependencies
between remote services, how to express and validate them?

