Radiation in RE38 and UJ32 under nominal LHC operation

Andy Presland (AB/ATB/EET) Thijs Wijands (TS/LEA)

Outline

Layouts and Locations Radiation sources Monte-Carlo method Arc description Approximations and errors Results Summary

Locations

Location

UJ32 in Arc23 half-cell 18L3RE38 in Arc34 half-cell 21R3

UJ32 - Ajout saferoom + mur + chicane - A.Kosmicki - 21 Mars 2003

Radiation sources (I)

Point losses

- loss distribution around the ring have local maxima
 - high luminosity interaction points IP1 and IP5
 - collimation insertion regions IR3 and IR7.
- contributions from off-momentum protons created IP1 and IP5
 - calculations have shown negligible contributions
 - IP1 (RE38): neglect beyond QF19 in the adjacent arcs (Arc12, Arc81)
 - IP5 (UJ32): neglect beyond QF19 in the adjacent arcs (Arc45, Arc56)
- contribution from off-momentum protons created in IR3
 - Estimates by Baischev show the downstream proton losses are concentrated in the chain of Dispersion Suppressor (DS) magnets B8B-Q8-B9A.
- to good approximation we can neglect point losses

Radiation sources (II)

Beam-gas interactions

- number of beam-gas interactions
 - depends on molecular composition of the gas
 - Imiting value deduced from max heat load to cryo magnets
 - alternatively estimated from operational scenarios.
- historically assumed value 1.65×10¹¹ m⁻¹y⁻¹ [Potter 95]
 - used previously to compute dose levels in the ARCs
 - derived from limit on cryogenic heating by hadronic showers
 - assumes 250 hour beam-gas lifetime limit
- this study adopts historical value in absence of better estimate
 enables easy comparison to earlier work
- an important input is 10 years old

Monte-Carlo Method

7 TeV proton interactions

- isotropic distribution along each beam line
- Interactions forced with carbon nuclei (dominate cross-section for beam-gas)

Radiation scoring

- radiation (dose, hadron fluence, 1 MeV n⁰) in a scoring bin is given by the sum of all contributions scored in that bin arising from each interactions.
- data is normalised to give the levels per interacting proton.

Weighting

data per interacting proton are weighted by the beam-gas interaction rate

Conversions

- total energy deposition (GeV/cm^3) is converted to dose (1 Gy = 1 J/Kg)
 - at run-time using fluka material densities
- fluence converted to $1 \text{MeV} n^0$ equiv. on a particle-by-particle basis
 - interpolating between the values of NIEL curve data.
- hadron fluence converted to 20 MeV by applying scoring threshold

Arc geometry

Optics v6.2 •Arcs unchanged in upgrades •No effect on results expected

Error sources

Physics model

- uncertainty in the inelastic *pp* cross section at 7 TeV
- uncertainty in the energy flow and multiplicity as a function of rapidity
- these effects have been studied by comparing event generators
 - a factor 1.3 was observed [Huh95]

Geometrical errors

– a factor 2 for geometry description and material composition is customary.

Radiation environment

- [Huhtinen 00] has approached this problem by comparing the results of FLUKA and MARS codes in a simple, well defined geometry.
 - this test will not be affected by experimental errors
 - since the two codes are independent they should not contain the same errors.
 - almost perfect agreement for energy-integrated neutron fluxes and for energy deposition
 - good agreement in the charged hadron spectra
 - this error can be neglected.
- results presented here have a factor 2 cumulated error

Results::RE38

refer to scorings.ppt

Summary

- RE38 and UJ32
 - beam-gas interactions are predominant radiation source
 - historical beam-gas interaction rate used
- RE38
 - two geometries were considered
 - baseline layout corresponding to the completed civil works
 - shielded layout that including a standard shielding configuration
 - shielding will reduce the radiation levels by an order of magnitude
 - the annual dose reduces from 3 x 10⁻² Gy y⁻¹ to 1 x 10⁻³ Gy y⁻¹
 - the 20 MeV hadron fluence reduces from 1 x 10⁸ cm⁻²y⁻¹ to 1 x 10⁷ cm⁻²y⁻¹
 - the 1 MeV neutrons equivalent fluence reduces from 5 x 10⁸ cm⁻²y⁻¹ to 5 x 10⁷ cm⁻²y⁻¹
 - electronic equipment is not rad hard by design shielding construction is recommended
- UJ32
 - existing wall provides a reduction of the radiation levels
 - reduction approaching a factor 100 is obtained for total ionizing dose- dose will be below 0.01 Gy/y
 - 20 MeV hadrons fluence expected to range from 10⁸ hadrons cm⁻¹y⁻¹ to 10⁷ hadrons cm⁻¹y⁻¹
 - 1 MeV n⁰ equivalent fluence expected to range from 10⁹ neutrons cm⁻²y⁻¹ to 10⁸ neutrons cm⁻²y⁻¹
 - dose is not an issue and electronics are expected to operate within specification
 - energetic neutrons may be a problem for the power distribution racks close to the beam
 - The neutron flux monitoring equipment that will be installed at the chicane entry, will help to make this issue more precise.