Radiation damage to LHC fibres

Andy Presland (AB/ABT/EET) Thijs Wijnands (TS/LEA) L.De Jonge (TS/EL) T. Sugito (Draka Comteq NKF Kabel B.V)

Overview

- Introduction
- Doped a-SiO₂
- Attenuation of light
- Kinetic modeling
- Experimental results
- Conclusion

Introduction

- Electronics will be installed in the tunnel close to beam
 - optimise performance
 - increase the S/N ratio
 - reduce cabling costs
- Data is mainly transmitted via a fieldbus protocol to surface buildings
 - copper
 - optical fibre
- 3 major distributed communication systems use fibre optical links
 - Quench Protection System
 - Power Converters
 - Cryogenics system
- Another big consumer of fibres is the BLM/BPM system
 - transmits raw data from BPMs/BLMs crates over fibre optical to surface.
- Fibres in the LHC tunnel will suffer from radiation-induced attenuation
 - may eventually halt the communication of data after a few years of operation
 - radiation-induced attenuation depends on the type and the concentration of dopants
 Phosphor (P), Fluorine (F), Germanium (Ge) in the amorphous silicon dioxide (a-SiO2) core
 - at present Ge-P-doped and Ge-doped fibres are being installed in the LHC tunnel.

Doped a-SiO₂

- a-SiO₂ is a material with unordered silicon atoms
 - dangling bonds
 - distorted Si-Si bonds
- Defects yield intermediate energy levels in the energy gap
 - incident light excites electrons from valence band to intermediate energy levels
 - trapped electron in a potential well and acts as an oscillator (absorber of light)
 - limits transmission in pure a-SiO₂
- a-SiO₂ fibre doped with impurities (Ge,P,F)
 - adding impurities to the a-SiO₂ structure changes the energy structure
- a-SiO₂ deposited under hydrogenation (Plasma Chemical Vapour Deposition)
 - hydrogen atoms saturate dangling and weak bonds
 - removes defects and creates a defect-free energy gap
 - excited electrons do not have enough energy to bridge the energy gap
 - the absorption of light in the fibre is strongly reduced
- Fibres in the LHC tunnel
 - Ge-P doped a-SiO₂ from Draka NK Cables Ltd
 - Ge doped a-SiO₂ from Draka Fibre Technology BV (PCVD process)

Attenuation of light

The attenuation of an optical link depends on the wavelength of light

- three low-loss windows of interest
 - 850 nm widely used with multimode (MM) fibres (850 nm LEDs are inexpensive)
 - 1310 window offers lower loss but at modest increase in the cost of the LEDs
 - 1550 nm window is mainly of interest in long distance telecommunications applications

used at

CFRN

Absorption spikes

- exist if SiO₂ contains impurities/point defects
- are created if the sample is exposed to radiation
 - radiation can activate pre-existing point defects
 - radiation can create totally new point defects
- Wavelength at which the defects absorb
 - depends on the structure of the point defect
 - depends on the type of dopant involved
- SM LHC fibres have attenuation of approximately 0.35 dB/km at 1310 nm
 - optical joints and connectors add to this
 - LHC connectors inspected with an interferometer: 1 dB per optical connection guaranteed
 - radiation damage adds to this
 - we must assess how much

Defect creation

Creation of point defects by radiation (knock-on and radiolysis)

- the knock-on process
 - direct transfer of the projectile kinetic energy causes atomic displacements
 - may create an interstitial-vacancy (Frenkel) pair or a site distortion
 - **produced by fast/thermal n^0, energetic ions, energetic e- and \gamma rays (indirectly)**
- the radiolysis process
 - radiation changes the state of an electron
 - energy absorbed appears as
 - 'hot' electrons (in a normally empty conduction band)
 - 'hot' holes (in a normally occupied valance band)
 - excitons (electron-hole pairs bound to each other)
 - Iocalization at suitable lattice sites (traps)
 - leads to stable electronic states (creation of colour-centres)

Kinetic modeling (I)

- The dependence of the population on **dose rate** (and temperature)
 - easily seen in a simple, first order kinetic formulations

$$\frac{\partial n}{\partial t} = a\dot{D} - \frac{n}{\tau}$$

- Isothermal, constant dose-rate regime
 - solution is a saturating exponential

$$n = a\dot{D}\tau [1 - \exp(-t/\tau)]$$

- Transformation to a dose-equivalent formulation
 - assume saturating dose, D_s = dose rate × characteristic lifetime

$$D_s = \dot{D}\tau$$

- n = defect concentration
- D = dose-rate
- a = probability of defect generation
- τ = characteristic defect lifetime

Kinetic modeling (II)

Kyoto considers **sum** of saturating exponentials

$$A(t) = \sum_{i=1}^{n-1} [k_i (1 - \exp(-t / \tau_i))]$$

K1,2...n-1 correspond to saturation values of different contributions (dependent on the dose rate)

$$K_i = K_i \left(\dot{D} \right)$$

Radiolysis attenuation anneals when irradiation stopped. Recovery is parameterised as

$$A(t) = \sum_{j=1}^{m-1} [A_j \exp(-t/\tau_j)]$$

The characteristic lifetime τ can vary in magnitude from minutes to infinity

Kinetic modeling (III)

Reasonable to assume the number of defects is proportional to absorbed dose

$$A(t) = K_n \quad , \quad K_n = K_n(D)$$

Validity range limited by saturation at very high doses and transients during intense, pulsed irradiation

After a sufficiently long shutdown period, the attenuation in a LHC fibre in the tunnel will be almost entirely determined by the value of the total accumulated dose

Results (I)

⁶⁰Co at POSEIDON, CEA-Saclay 1000 Gy/hr

Ge doped SM fibre (Draka Fibre Technology BV)

Results (II)

⁶⁰Co at POSEIDON, CEA-Saclay 1000 Gy/hr

Ge doped SM fibre (Draka Fibre Technology BV)

Results (III)

60Co at POSEIDON, CEA-Saclay 500 Gy/hr

Ge-P doped SM fibre (Draka NK Cables Ltd)

Fit to kinetic models

Ge-doped fibres at 1 kGy/hr

- dynamic response
 - single, dose-rate dependant, saturating exponential
- permanent damage
 - remains after annealing period
 - linear dependence on total dose

fit coefficients	1310 nm	1550 nm
K ₁ [dB/km]	24.20	14.50
τ_1 [mins]	11.16	17.40

Table I. Fitting parameters for the radiation-inducedattenuation in Ge doped fibres

Ge-P-doped fibre at 500 Gy/hr

- dynamic response
 - no evidence of saturation
- Permanent damage
 - no evidence of annealing
 - single dose dependent term
- consistent with literature
 - attributed to P1 defect (1570 nm)

fit coefficients	1310 nm	1550 nm
A ₁ [dB/Gy.km]	15.34	6.75
τ_1 [mins]	31.14	35.93

Table II. Fitting parameters for annealing at of theradiation induced attenuation in Ge-P doped fibres

Extrapolation to LHC

- optical fibre path
 - from electronics crate under a cryostat at mid ARC
 - to an acquisition crate in the control room at SR7
- radiation source
 - beam-gas interaction in the ARC
 - point losses in DS and LSS (collimator location)
- working assumptions
 - radiation levels from Mars and Fluka simulation
 - 200 days LHC operation per year

Extrapolation to LHC

Tunnel area	Distance [m]	Dose rate [Gy/h]	Annual Dose [Gy]	Attenuation [dB/y]	Attenuation [dB/y]
				1310 nm Ge-P	1310 nm Ge
LSS R7	270	0.625	3000	64.8	8.1
DS R7	170	0.002	10	0.14	0.02
Half Arc	1214	0.001	5	0.49	0.06
Total	1654	-	3015	65.4	8.1

Conclusion

- Increase in the attenuation at 1310 nm due to radiation damage
- Attenuation will depend on
 - type and concentration of dopants
 - accumulated dose
 - dose rate
- Attenuation in Ge-P-doped 0.08 dB/km per Gy at 1310 nm
 - dose rate of 500 Gy/hr
 - 8 times higher than Ge-doped
 - increases linearly with accumulated dose
 - no saturation observed
 - no annealing observed
 - possibly it is not observable on considered timescale