B. Dehning, E. Effinger, G. Ferioli, J.L. Gonzalez, G. Guaglio, M. Hodgson, E.B. Holzer, L. Ponce, V. Prieto, C. Zamantzas CERN AB/BDI

Loss monitor specifications Radiation tolerant Electronics Ionisation chamber development

BLM Specifications (Quench Levels)

- Variety of BLM families (A, C, C*, S*), accuracies: rel.: 0.25, absolute 5, later 2
- Identical electronics located near chambers => radiation tolerant design
- Dynamic range in:
 - Time: $t_{min} = 89 \text{ us} t_{max} = 100 \text{ s} =>$ response time of ion chambers
 - Intensity: 2.5 pA 1 mA => linearity of chamber response

Digitalisation Electronics

Ionisation chamber currents (1 litre)

450 GeV, quench levels (min)	100 s	60 nA
7 TeV, quench levels (min)	100 s	10 nA
Required 25 % rel. accuracy, error small against 25% => 5 %		100 pA
450 GeV, dynamic range min.	10	10 pA
	100	2.5 pA
7 TeV, dynamic range min.	10 s	160 pA
	100s	80 pA

AMPL+JFETs

Irradiation of Amplifier and JFET results in an increase of the output signal

Component Irradiation JFET integral dose

Observation: Increasing of (low current) signal during irradiation and integral dose effect.

Irradiation of Single Components

Component	Supplier	Name	Integral dose (effects after irradiation)	Single event (5E8 p/s/cm ²)	
CFC JFET (switch)	TEMIC	J176	70 pA after 500 Gy (\rightarrow calibration)	+700 pA (dark current)	
CFC JFET + diode (switch)	TEMIC, ?	J176	< 10 pA	to be tested	
CFC Amplifier	BURR- BROWN	OPA627	30 pA	-800 pA (current into the component)	
CFC threshold comparator	PHILIPS	NE521	No	~+100 pA (threshold value is lower)	
CFC monostable	PHILIPS	74HCT123	No	Small	

- Successful change of JFET switch circuit
- Offset current variation of amplifier compensated by DAC (to be tested)

Dose at Quench Levels below Quadrupole Magnets and Single Event Effect

Energy	Steady	Geometrical	Loss	MIP/p/cm ²	MIP/s/cm ²	quench	Gy/y	weights	range (at
	state loss	factor	FWHM	1	on the CFC	limits			dump
	[p/m/s]		[m]			current			limit)
450 GeV	7.00E+08	1.00E-01	3	3.00E-03	6.30E+05	60 nA	5.59E+02	0.3	max Gy/y
				5.00E-04	1.05E+05	10 nA	9.32E+01	0.3	7.26E+01
7 TeV	7.00E+06	1.00E-01	3	4.00E-02	8.40E+04	8 nA	7.46E+01	0.7	min Gy/y
				8.00E-03	1.68E+04	1.6 nA	1.49E+01	0.7	1.27E+01

- Offset current increase due to SEE
 - offset current proportional to loss rate
 - ratio: offset current to loss rate, location and energy dependent
 - Effect blow < 1% of loss rates (negligible error)

Ageing Test of Ionisation Chamber in the SPS (I)

- SPS system:
 - Ionisation chambers with parallel plate geometry (0.5 cm separation)
 - Electronics in surface buildings with a analog signal transmission of about 1.5 km
 - Operation time:
 - chambers over 20 years
 - electronics 10 years
 - Total received dose:
 - ring 0.1 to 1 kGy/year
- Test method:
 - Chamber gas ionised with Cs source
 - Observation of created charges with installed electronics (about 180 chambers)

Ionisation Chamber and Electronics Tests SPS (II)

SPS BLMs

- SPS Results:
 - Relative variation between:
 - successive acquisitions
 σ/mean < 0.005
 - between different monitors σ /mean < 0.01 (for ring BLMs) σ /mean < 0.05 (for Extr., inj. BLMs)
- LHC:
 - Ionisation chamber material choice very close to SPS materials
 - Gas likely N₂ (SPS ring chambers N₂, others air)

Ionisation Chambers and SEM Detector for the LHC

T2 Beam Tests

Geant Energy Loss Simulation

- Motivation for test measurements and simulations
 - required absolute accuracy (2) over large dynamic range (7 – 8 order of magnitude)
 - Detectors sensing far shower tails (trans. distance 38 cm) of the proton loss shower (inaccuracy of simulations, particle spectrum energy below 100 MeV @ 450 GeV)
 - test measurements only with proton beams
- Ongoing studies

Time Response Simulations (Garfield)

- Motivation: time response time optimization of coax chamber geometry, depending on:
 - Chamber geometry
 - Drift voltage polarity
 - Homogenous or non homogenous charge creation in volume
- Check with measurements in the BOOSTER (50 ns pulse, 5 10⁸ prot. 1.4 GeV), ongoing

Summary

- Radiation tolerant design of BLM tunnel electronics almost finished, To be done:
 - Test of modified circuit
 - Test of FPGA with final program
- Ageing test of ionisation chambers in the SPS show small degradation of monitors (few exceptions, high dose area, ...), chamber gas analysis ongoing
- Design of new LHC prototype ionisation chamber
 - Chambers are test
 - with different gases (N_2 Ar, ArCO₂)
 - in different beams (H6, T2, BOOSTER dump line)
 - Energy deposition and time response simulation are almost finished.
- SEM proto type detector
 - next year to be tested in BOOSTER dump line