Towards Cost-Effective Service Provisioning and Survivability in Ultra High Speed Networks

Bin Wang

Department of Computer Science and Engineering

Wright State University

Dayton, OH 45435

Outline

- Dynamic provisioning of scheduled traffic demands
 - Sliding scheduled traffic model
- Service provisioning of survivable scheduled traffic demands
- Diverse routing in networks with shared risk link groups (SRLGs)
- Traffic grooming

Dynamic Provisioning of Sliding Scheduled Traffic Model

 \blacksquare A demand (s, d, n, ℓ , r, \mathcal{T})

- s: source
- d: destination (or a destination set)
- n: capacity requirement
- \blacksquare τ : duration, or lasting time
- [ℓ , r]: time window during which demand of duration τ must be satisfied
- **Example:** (*s*, *d*, 1, 10:00, 13:00, 60 minutes)

Time Conflict & Resource Conflicts

- Time conflicts of a set of scheduled demands M (temporal conflicts)
 - Demands may overlap in time
 - Demands that are disjoint in time allow resource reuse
- Resource conflicts (spatial conflicts)
 - Routes of demands may overlap
 - If not enough resources are available, conflicts result
 - Some demands may not be schedulable because of lack of resources

Dynamic Provisioning of Scheduled Traffic Demands

- **Problem**: given a sliding scheduled traffic *d*, find a minimal hop route such that the bandwidth and timing requirements of *d* are satisfied
- Given a demand d, the actual starting time of the demand is variable relative to the left boundary of its associated time window $[\ell, r]$
- Propose an all hops optimal routing algorithm that iteratively finds all feasible paths of at most h hops at the end of h-th iteration

Dynamic Provisioning of Scheduled Traffic Demands

- Remove infeasible links from the network
- Calculate maximum sized feasible intervals on links
 - Bandwidth feasible
 - Timing feasible
- Each node calculates and maintains feasible paths from source to the node in the form of feasible intervals
 - A feasible interval corresponds to a feasible path
- hth-iteration:
 - (h-1)-hop paths maintained on nodes will be tried to be extended to h-hop paths by intersecting with feasible intervals on h-th link
 - Result paths will be merged and redundant paths will be removed

Dynamic Provisioning of Scheduled Traffic Demands

- The all hops optimal routing algorithm is cycle-free
- The all hops optimal routing algorithm finds all feasible paths of at most h hops from the source to all other nodes at the end of h-th iteration

Service Provisioning of Survivable Scheduled Traffic Demands

Problem

- Given a network topology and a set of scheduled connection requests,
 - find two link disjoint paths for each connection request
 - one working path and one protection path
 - objective is to minimize
 - the total network resources used by working paths and protection paths of all demands
 - » (e.g., number of wavelength-links)
 - while 100% restorability is guaranteed against any single failures

Service Provisioning of Survivable Scheduled Traffic Demands

- Exploit network resource reuse in both space and time
- Two-step optimization approach (joint approach also studied)
 - Step 1: routing subproblem
 - For each demand, use Eppstein's k-shortest path algorithm to pre-compute a set of alternate routes as candidate working paths
 - For each candidate working path of a demand, remove it from the network and use Eppstein's k-shortest path algorithm again to pre-compute a set of candidate protection paths
 - Step 2: wavelength assignment subproblem: ILPs
 - Select paths and assign wavelengths

Performance Evaluation

Weak demand time correlation

			DP	SP	SDP	SSP
Case	Network	I	ILP1	ILP2	ILP3	ILP4
	10-node	1	89	76	28	27
1	$ \mathcal{D} = 8$	2	89	74	28	27
	$ \mathcal{K} = 16$	3	89	73	28	27
	10-node	1	176	148	53	50
2	$ \mathcal{D} = 16$	2	176	136	52	48
	$ \mathcal{K} = 32$	3	176	129	51	47
	14-node	1	176	142	66	65
3	$ \mathcal{D} = 16$	2	176	138	65	62
	$ \mathcal{K} = 32$	3	176	136	64	58
	14-node	1	350	273	71	70
4	$ \mathcal{D} = 32$	2	350	248	70	68
	$ \mathcal{K} = 64$	3	350	233	70	63

Performance Evaluation

DD

CD

CCD

CUD

Medium demand time correlation

			DP	5P	2DP	33P
Case	Network	I	ILP1	ILP2	ILP3	ILP4
	10-node	1	89	76	44	43
1	$ \mathcal{D} = 8$	2	89	74	44	43
	$ \mathcal{K} = 16$	3	89	73	44	43
	10-node	1	176	148	69	67
2	$ \mathcal{D} = 16$	2	176	136	68	61
	$ \mathcal{K} = 32$	3	176	129	67	60
	14-node	1	176	142	90	84
3	$ \mathcal{D} = 16$	2	176	138	89	82
	$ \mathcal{K} = 32$	3	176	136	88	81
	14-node	1	350	273	120	108
4	$ \mathcal{D} = 32$	2	350	248	119	104
	$ \mathcal{K} = 64$	3	350	233	118	103

Performance Evaluation

Strong demand time correlation

			DP	SP	SDP	SSP
Case	Network	I	ILP1	ILP2	ILP3	ILP4
	10-node	1	89	76	54	53
1	$ \mathcal{D} = 8$	2	89	74	54	52
	$ \mathcal{K} = 16$	3	89	73	54	52
	10-node	1	176	148	114	106
2	$ \mathcal{D} = 16$	2	176	136	113	101
	$ \mathcal{K} = 32$	3	176	129	112	98
	14-node	1	176	142	118	103
3	$ \mathcal{D} = 16$	2	176	138	117	100
	$ \mathcal{K} = 32$	3	176	136	116	98
	14-node	1	350	273	207	160
4	$ \mathcal{D} = 32$	2	350	248	203	152
	$ \mathcal{K} = 64$	3	350	233	201	150

Performance

- Holding time aware Dedicated Protection (SDP) and Holding time aware Shared Protection (SSP) schemes use much less wavelengthlinks than DP and SP schemes
- As the demand time correlation gets stronger, the improvement of SSP over SDP increases
- The increase of the number of candidate working paths from 1 to 2 leads to a larger savings in network resources than increasing it from 2 to 3
- The improvement of SDP over DP is more significant than that of SSP over SP
- The improvement of SP over DP appears to be larger than that of SSP over SDP

Diverse Routing in Networks with SRLGs

- A network defined as G = (V, E), each link l in E has a cost
- A link can belong to more than one SRLGs
- The links in a SRLG group must share a common endpoint

- Diverse Routing:
 - find a pair of paths between a source and a destination at the optical layer
 - such that they do not share an SRLG and
 - has the least total link cost

Basic Algorithm Steps

9/28/2005

Overview of the Algorithm

- 1. Route the shortest path P_a
- Delete links in P_a from the topology, and assign negative weights to the reverse links for each of the link along P_a
- 3. Apply a Bellman-Ford flavored process to route the second path P_b
- Do segment deletion and exchange to the common segments between P_a and P_b

Theorem 1: the two paths obtained by the diverse routing algorithm are SRLG-disjoint

Theorem 2: The pair of paths obtained are optimal in terms of total link cost.

Traffic Grooming

- consolidate client traffic onto lightpaths;
- •route client circuit calls over the logical topology;
- •achieve efficient utilization of the optical network bandwidths

 DOE BNL Meeting

Design of Logical Topology for Dynamic Traffic Grooming

- Design a logical topology to carry client calls
- Focused on dynamic circuit traffic
- Objective: minimize used network resource while meeting the traffic blocking probability from clients
- Definitions:
 - sd-pair: a source and destination client nodes pair
 - g-link: the bundle of lightpaths between an sd-pair
- Does not need dynamic lightpath provisioning capability

Lightpath Blocking Model

- The g-link blocking probability can be computed by sequentially overflowing multi-service traffic among lightpaths in a g-link
- The average blocking probability for all classes of calls is $\overline{B}^m(\rho) = \sum_{s \in S} \frac{\rho_s B_s}{\rho}$

Logical Topology Design for Traffic Grooming

- Given the requirements for the end-to-end traffic blocking probabilities between sd-pairs,
 - Compute the number of lightpaths that are needed by each sd-pair and assign wavelengths to each lightpath,
 - Minimize the used ports (transponders), or wavelengths, while meeting the requirements for traffic blocking probabilities
- Case A: minimize the number of lightpaths (i.e., transponders)
- Case B: minimize the number of wavelengths, without wavelength conversion
- Case C: minimize the number of wavelengths, with full wavelength conversion
- Case D: minimize the number of wavelengths, with sparse wavelength conversion

Logical Topology Design for Traffic Grooming

- Address the average blocking probability for all classes of calls
 - can be extended to address the blocking probability for each class of calls
- Assume single-hop grooming, which completely eliminates intermediate electronic forwarding
- Being extended to logical topology design for multihop grooming

Summary

- Dynamic provisioning of scheduled traffic demands
- Service provisioning of survivable scheduled traffic demands
- Diverse routing in networks with shared risk link groups (SRLGs)
- Traffic grooming