DOE UltraScienceNet

Experimental Network Testbed for High-Performance Network technologies and Applications

Nagi Rao, Bill Wing, Steven Carter, Qishi Wu Computer Science and Mathematics Division Oak Ridge National Laboratory {raons,wrw,scarter,wuqn}@ornl.gov

https://www.usn.ornl.gov

Sponsored by

High-Performance Networks Program

Mathematics, Information and Computational Science Division

Office of Advanced Scientific Computing Research

U.S. Department of Energy

Contents
Background and Overview
Data-Plane
Control-Plane
Experimental Results

DOE UltraScience Net - In a Nutshell

Experimental Network Research Testbed:

To support advanced networking and related application technologies for DOE large-

scale science projects

Features

- End-to-end guaranteed bandwidth channels
- Dynamic, in-advance, reservation and provisioning of fractional/full lambdas
- Secure control-plane for signaling
- Proximity to DOE sites:
 NLCF, FNL,NERSC
- Peering with ESnet, NSF CHEETAH and other networks

DOE UltraScience Net: Need, Concept and Challenges

The Need

- DOE large-scale science applications on supercomputers and experimental facilities require high-performance networking
 - Moving petabyte data sets, collaborative visualization and computational steering (all in an environment requiring improved security)
- Application areas span the disciplinary spectrum: high energy physics, climate, astrophysics, fusion energy, genomics, and others

Promising Solution

- High bandwidth and agile network capable of providing on-demand dedicated channels: multiple 10s Gbps to 150 Mbps
- Protocols are simpler for high throughput and control channels

Challenges: Several technologies need to be (fully) developed

- User-/application-driven agile control plane:
 - Dynamic scheduling and provisioning
 - Security encryption, authentication, authorization
- Protocols, middleware, and applications optimized for dedicated channels

DOE-Funded Support Application Projects

- Lambda-Station
 - FNAL-developed analysis "station" for high-energy physics
- Peering and Terascale Supernova Initiative
 - Collaborative visualization
 - Interdomain peering with NSF CHEETAH
- ESnet MPLS Tunnels
 - MPLS signaling to setup on-demand and in-advance circuits
- Remote Microscopy and Genomics Applications
 - PNNL developed remote-user control of confocal microscopy

USN Architecture: Separate Data-Plane and Control-Planes

Secure control-plane with:

Encryption, authentication and authorization
On-demand and advanced provisioning

Dual OC192 backbone:
SONET-switched in the backbone
Ethernet-SONET conversion

DOE UltraScience Net: Data Plane

Connects Atlanta, Chicago, Seattle and Sunnyvale:

 Dynamic and in-advance provisioned dedicated dual 10Gbps links at 50 Mbps resolution – SONET or Ethernet

USN Data-Plane: Node Configuration

In the Core:

 Two OC192 switched by Ciena CDCIs

At the Edge

10/1 GigE provisioning using Force10 E300s

Node Configuration

Data Plane User Connections:

Direct connections to:

core switches –SONET &1GigE

MSPP – Ethernet channels

Utilize UltraScience Net hosts

USN Data-Plane: User Ports

- User connections
 - Ciena CDCI
 - SONET ports on CDCI
 - GigE ports on CDCI
 - Force10 E300
 - 10GigE ports on E300
 - GigE ports on E300

GigE ports must match at the connection end points

Secure Control-Plane

VPN-based authentication, encryption and firewall

- Netscreen ns-50 at ORNL
 NS-5 at each node
- Centralized server at ORNL
 - bandwidth scheduling
 - singnalling

Need for Secure Control Plane

- Security of control plane is extremely important
 - USN switches (Ciena, Force10, Turin, Sycamore, Whiterock) do not support IPSec – do not know of any that do
 - TL1/CLI and GMPLS commands sent in the "clear"
 - Can be sniffed to profile the network
 - Can be injected to "take over" the control
 - Following cyber attacks could be easily launched
 - Hijack the dedicated circuits; sustain a DOS flood to prevent recovery
 - Takeover/flood UltraScienceNet end hosts and switching gear
- USN control-plane is out-of-band and secure
 - Uses VPN-based control channels and firewalled enclaves

Control Plane

Phase I

- Centralized VPN connectivity
- TL1/CLI-based communication with CoreDirectors and E300s
- User access via centralized web-based scheduler

Phase II

- GMPLS direct enhancements and wrappers for TL1/CLI
- Inter-domain "secured" GMPLS-based interface

Complete Control Plane and Management Plane

Web Interface

- Allows users to logon to website
- Request dedicated circuits
- Based on cgi scripts written in c and c++

Bandwidth Scheduler

- Computes path with target bandwidth
 - Is currently available?
 - Extension of Dijkstra's algorithm using interval sequences
 - Provide all available slots
 - Extension of closed semi group structure to sequences of reals
 - Both are solvable by polynomial-time algorithms
 - Implementation first part almost complete; needs interface

Notes:

- GMPLS does not have this capability
- Control-plane engineering taskforce interested in using it.
- Not an NP-Complete problem

Peering: UltraScience Net – NSF CHEETAH

- Peering: data and control planes
 - Coast-to-coast dedicated channels
 - Access to ORNL supercomputers

Peering at ORNL:

Data plane:
10GigE between
SN16000 and e300
Control-Plane:
VPN tunnel

Current Status: Data-Plane

- Data-Plane Connections:
 - Chicago-Sunnyvale
 - May 2005: 10GigE WAN-PHY between E300
 - August 2005: 2 x OC192 links between CDCIs
 - ORNL-Chicago
 - August 2005: 2 x OX192 links between CDCIs
 - Atlanta will be connected after SC2005
- User-connections
 - May 2005
 - FNL and CalTech
 - August 2005
 - PNNL, ESnet

Current Status: Control-Plane

- ORNL node is setup
 - VPN, console servers are setup
 - signaling modules being tested ~ 1 month
 - Bandwidth/channel reservation system ~ 1
 month
- Chicago, Sunnyvale, Seattle nodes are setup
- SC2005 node will be moved to Atlanta

ESnet Related Issues

- Port Assignments:
 - 10GigE port each on E300 in Sunnyvale and Chicago
 - multiple 1GigE ports assigned on E300 in Sunnyvale and Chicago
- Cross-connects
 - 1 SM and 4 MM cross-connects ordered in Level(3) POP in Sunnyvale and in Starlight in Chicago
- Control-Plane Issues are being addressed

Some Experimental Results

- Layer-2 double-loopback test:
 - Entire USN SONET backbone connected in 16000 mile single connection
 - 16 hours continuous zero errors

- Jitter measurements
 - ORNL-SUNNYVALE hostto-host 1K packets
 - round-trip time:

• mean: 82ms

• jitter: 0.2%

Throughput profile

- Transport measurement
 - ORNL-SUN host-to-host file transfers 4000mile, 10G connection
 - Limited by host Hurricane
 - Average throughput 2.3Gbps
 - Loss rate < 0.1%

Publications

- 1. N. S. V. Rao, W. R. Wing, S. M. Carter, Q. Wu, UltraScience Net: Network testbed for large-scale science applications, IEEE Communications Magazine, 2005, in press.
- 2. Q. Wu, N. S. V. Rao, Protocols for high-speed data transport over dedicated channels, Third International Workshop on Protocols for Fast Long-Distance Networks, 2005.
- 3. Q. Wu, N. S. V. Rao, A class of reliable UDP-based transport protocols based on stochastic approximation, Proceedings of IEEE INFOCOM, 2005.
- 4. N. S. V. Rao, Q. Wu, S. M. Carter, W. R. Wing, Experimental results on data transfers over dedicated channel, First International Workshop on Provisioning and Transport for Hybrid Networks: PATHNETS, 2004.

Related Dynamics Project

- M. Yang, J.-F. Ru, H. Chen, A. Bashi, X. R. Li and N. S. V. Rao, Predicting Internet end-to-end delay: A statistical study, to appear in Annual Review of Communications, Vol. 58, 2005.
- N. S. V. Rao, J. Gao, L. O. Chua, On dynamics of transport protocols in wide-area Internet connections, in Complex Dynamics in Communication Networks, L. Kocarev and G. Vattay (editors), 2005.
- J. Gao, N. S. V. Rao, J. Hu, J. Ai, Quasi-periodic route to chaos in the dynamics of Internet transport protocols, Physical Review Letters, 2005.
- J. Gao, N. S. V. Rao, TCP AIMD dynamics over Internet connections, IEEE Communications Letters, vol. 9, no. 1, 2005, pp. 4-6.
- Y. Guo, Z. Qu, N. S. V. Rao, A new TCP end-to-end congestion avoidance algorithm through output feedback, Asian Control Conference, 2004.
- M. Yang, X. R. Li, H. Chen, and N. S. V. Rao. Predicting Internet end-to-end delay: An overview, Proc. of 36th Southeastern Symposium on Systems Theory, 2004.
- Q. Wu, N. S. V. Rao, S. S. Iyengar, On transport daemons for small collaborative over wide-area networks, Proceedings of International Performance Computing and Communications Conference, 2005.

Conclusions

USN Deployment
Data-Plane - Complete
Control-Plane - almost Complete

Request for USN Collaborations
USN channels/circuits
USN hosts – transport, middleware
Locate your hardware at USN nodes

Thank you

https://www.usn.ornl.gov

