UltraScienceNet Research Testbed Enabling Computational Genomics

Project Overview

John D. McCoy

Principal Investigator

Tom McKenna

Project Manager

Objective

- ➤ To research, design, and build a network research testbed over the DOE UltraScienceNet to enable computational genomic applications.
- ➤ This testbed will enable researchers to test and demonstrate applications that cause significant problems for traditional TCP/IP networks.

UltraScience Network Seattle Chicago LBNL ANL SLAC **FNAL** Sunnyvale **Atlanta ORNL** UltraScienceNet Backbone Research Exchange Point Access via Site-Funded Connection DOE National Lab

Genomics Application Testbed *Research Focus*

- Application drivers
 - Cell biology using high-speed spectral confocal microscope
 - Proteomics research using mass spectrometry
- ► Research focus
 - Transport methods for remote instrument control
 - High throughput protocols
 - Visualization over dedicated channels

We will deliver a proof of concept

- Microscope prototype demonstration
 - Exert remote control of high speed microscope in real time
 - Near-real time visualization of the experiment
 - Send high quality data to a network cluster for 3D rendering
 - Store the high quality image for further analysis & replay
- ▶ Three Year Project Design, Develop, Research

Nikon Confocal Microscope

Issues / Design Considerations

- Real time data transfer
 - Gbps speed
- Bulk Data Transfer
 - Will be approaching petabyte sizes
- Data Availability
 - Must be able to return image data quickly with high quality
- Remote Instrument Operation
 - Need real time transfer of control signals
 - No packet loss or delay jitter
- Remote Visualization
 - Need near real-time access to visualizations of running experiments to gain collective insights into cellular responses, and to make immediate decisions regarding the future course of the experiment.

PNNL USN Research Partnerships

Growing the Program

- ► ORNL and Nagi Rao
 - USN Connectivity, Visualization, Research Agenda
- Robert Grossman
 - Univ. of Illinois Chicago
 - Incorporating UDT into network research testbed
- ► Scott Budge
 - Utah State University
 - FPGA and Streaming
- ► Richard Mount
 - SLAC
 - Bulk data management

Current Status

- Cross functional team of biologists, SW & HW developers, network engineers, graphics engineers is in place.
- Completed requirements specifications.
- Completed UltraScienceNet API
- Completed "remotizing" of confocal microscope application
- Completed microscope emulator
- Software Configuration Management system running
- ▶ USN Connectivity Completed
- Microscope Fiber Connectivity Completed.
- Current focus areas are on image capture and streaming
- Research agenda and collaborations ongoing.

Taking a Phased Approached Toward Enabling Network Research

- Phase 1 entails establishing the connectivity of the CaMatic software from a remote workstation to a server running software that emulates the confocal microscope over TCP/IP via the USN API. Currently working.
- ▶ Phase 2 includes streaming the real-time visualization imagery of the microscope via the USNAPI from the microscope to the remote workstation. Under Development.
- Phase 3 This will prove our ability to move large amounts of data off and on the machines utilizing 10GB network cards (Intel LR). Under Development.
- Phase 4 Test other protocols such as UDP and RTP start executing research agenda. Year 3 of project.

Research Areas – In the Context of Genomics Need to Address:

- ► Storage, bus, and NIC optimizations
- Throughput vs speed
- Bandwidth allocation
- Latency (round trip response times)
- Remote sensing and instrumentation in a high speed, circuit switched network
- ► Logic for choosing control protocols
- ► Logic for choosing transport protocols
- Secure access rights to certain types of data enable secure collaboration
- Cyber Security IDS, IPS, Authentication, etc. Deployment and impact upon the biologist.
- Your input into research agenda is welcomed

IMPACT

- ➤ The testbed will provide researchers and developers with an experimental infrastructure to provision on-demand, dedicated bandwidth to genomics applications.
- ➤ This work will facilitate genomic discovery by enabling scientists throughout the world to research, teach, and collaborate utilizing state of the art instruments.