Policy Management in Grids

(Aka "Identity Federation Management")

Marty Humphrey

Assistant Professor
Department of Computer Science
University of Virginia
Charlottesville, VA

Early Career Principal Investigator Program in Applied Mathematics, Collaboratory Research, Computer Science, and High-Performance Networks

Problem Statement (1)

- Policy: preferences, rules, goals, conditions, obligations, and acceptable procedures
- Policies in VOs are everywhere
 - Resource provider: What is the order in which I will service requests?
 - Resource consumer: What are my requirements for data storage (e.g., availability)?
 - Site-wide: What authentication mechanism is required?
 - VO-wide: What experiments get preference? (e.g., Open Science Grid)
- Problem: today, policies are only implicit
- Why is this a problem?
 - What went wrong? Why is my QoS so poor?

Problem Statement (2)

- Lack of acceptable policy languages
- Humans cannot easily express their policies
- Software components cannot find relevant policies
- Policies cannot be matched/resolved

Approach

MyPolMan

- Leveraging MyProxy to store/manage/retrieve my policies
 - "My credential can be retrieved by superschedulers but only for the purpose of querying candidate resources for my allocations"
 - "For services running under my credential, serve requests from users at ORNL before users from *.edu"

VoPolMan

- For physical organizations and virtual organizations
 - "All services must allow password authentication by prefer X.509-based authentication."
 - "Each physical organization in the VO must contribute 10 Terabytes disk storage with an availability of 99%."
 - "All work is to be performed on large queuing systems from 9 am 5 pm and on PC clusters after hours."

Grid Policy Management Architecture

Building Blocks

- MyProxy (http://myproxy.ncsa.uiuc.edu)
- CredEx (ICWS'2005)
- SAML
- XACML
- WS-Policy
- All messages use WS-Security and/or SSL

Requirements

- Policy language
- Client-side GUI
- Publish/Subscribe/Discovery
- Policy evaluator
- Auditing
- Interoperability: Standards-based

Policy-Aware Data Movement

Resource Provider Data Policies

- "Allow up to 30% of this disk for 'Grid' activities"
 - "No one user can have more than 10G"
- "Allow up to half of the network bandwidth to be used for 'Grid' activities"
- "Service ORNL requests before .edu requests"
- "All data requests must first be authenticated via GSI"

Consumer Data Policies

- Bandwidth
- Response Time (Latency)
- Availability
- Access Control
- Authentication
- Persistence / "non-scrubability"
- Replication
- Backup

Runtime

Better Policy-Aware Data Movement

Summary

- Grids are not as usable as they can be
 - Operations often fail because of (implicit) policy
- We are designing/implementing a policy architecture
 - Policy language, client-side GUI,
 Publish/Subscribe/Discovery, Policy evaluator, Auditing
- Prototype policy-aware gridftp data movement
 - Extend to network

