
Runtime Data Management for Data-
Intensive Scientific Applications 

Xiaosong Ma
NC State University

Joint Faculty: Oak Ridge National Lab
ECPI: 2005 – 2008



Presentation Roadmap

Problem definition
Proposed approaches
Preliminary results
On-going research



Data-Intensive Applications on NLCF
Data-processing applications 

Bio sequence DB queries, simulation data analysis, visualization
Challenges

Rapid data growth (data avalanche)
Computation requirement
I/O requirement
needs ultra-scale machines

Less studied than numerical simulations
Scalability on large machines

Complexity and heterogeneity
Case-by-case static optimization costly



Run-Time Data Management
Parallel execution plan optimization

Example: genome vs. database sequence comparison 
on 1000s of processors
Data placement crucial for performance/scalability
Issues

Data partitioning/replication
Load balancing

Efficient parallel I/O w. scientific data formats
I/O subsystem performance lagging behind
Scientific data formats widely used (HDF, netCDF)

Further limits applications’ I/O performance
Issues

Library overhead
Metadata management and accesses



Proposed Approach

Adaptive run-time optimization 
For parallel execution plan optimization

Connect scientific data processing to relational 
databases
Runtime cost modeling and evaluation

For parallel I/O w. scientific data formats
Library-level memory management
Hiding I/O costs

Caching, prefetching, buffering



Prelim Result 1: Efficient Data Accesses for 
Parallel Sequence Searches

BLAST 
Widely used bio sequence search tool
NCBI BLAST Toolkit

mpiBLAST
Developed at LANL
Open source parallelization of BLAST using database 
partitioning
Increasingly popular: more than 10,000 downloads since early 
2003
Directly utilizing NCBI BLAST 
Super linear speedup with small number of processors 



Data Handling in mpiBLAST Not Efficient

Databases partitioned 
statically before search

Inflexible: re-partitioning 
required to use different No. of 
procs
Management overhead: 
generating large number of 
small files, hard to manage, 
migrate and share

Results processing and output 
serialized by the master node
Result: rapidly growing non-
search overhead as

No. of procs grows
Output data size grows

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 16 32 62

Number of Processors

Ti
m

e 
(S

ec
on

ds
)

Other time
Search time

- Search 150k queries against NR 
database 

- Non searching time increases 
sharply as number of processors 
grows



pioBLAST

Efficient, highly scalable parallel BLAST implementation 
[IPDPS ’05]

Improves mpiBLAST
Focus on data handling 
Up to order of magnitude improvement on overall performance 
Currently being merged with mpiBLAST

Major contributions
Applying collective I/O techniques to bioinformatics, enabling

Dynamic database partitioning 
Parallel database input and result output

Efficient result data processing
Improved result caching for reducing I/O
Enhanced worker-master communication for reducing data 
transfer volume and removing master bottleneck



pioBLAST Sample Performance Results
Platform: SGI Altix at 
ORNL

256 1.5GHz Itanium2 
processors
8GB memory per 
processor

Database: NCBI nr (1GB)

Node scalability tests (top 
figure)

Queries – 150k queries 
randomly sampled from nr 
Varied no. of processors

Output size scalability 
tests (bottom figure)

62 processors 
Varied input query sets to 
generate different output 
data sizes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

mpi-4
pio-4

mpi-8
pio-8

mpi-1
6

pio-16

mpi-3
2

pio-32

mpi-6
2

pio-62

Program-No. of processes

Ex
ec

ut
io

n 
tim

e 
(s

)

Other time
Search time

0

500

1000

1500

2000

2500

3000

3500

4000

mpi-
11

M
pio

-1
1M

mpi-
47

M
pio

-4
7M

mpi-
96

M
pio

-9
6M

mpi-
15

3M
pio

-1
53

M

Program-Output Size

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Search Other



Prelim Result 2: Active Buffering
Hides periodic I/O costs behind computation phases [IPDPS ’02, 
ICS ’02, IPDPS ’03, IEEE TPDS (to appear)]
Organizes idle memory resources into buffer hierarchy
Masks costs of scientific data formats

Panda Parallel I/O Library
University of Illinois
Client-server architecture

ROMIO Parallel I/O Library
Argonne National Lab
Popular MPI-IO implementation, included in MPICH
Server-less architecture
ABT (Active Buffering with Threads)



Write Throughput w. Active Buffering

0

200

400

600

800

1000

1200

2 4 8 16 32

number of clients

th
ro

ug
hp

ut
 p

er
 s

er
ve

r
(M

B
/s

)
local buffering
AB
MPI
binary write

0

200

400

600

800

1000

1200

2 4 8 16 32

number of clients

local buffering
AB
MPI
HDF4 write

0

50

100

150

200

250

2 4 8 16 32

number of clients

th
ro

ug
hp

ut
 p

er
 s

er
ve

r
(M

B
/s

)

ideal
AB
MPI
binary write

0

50

100

150

200

250

2 4 8 16 32

number of clients

ideal
AB
MPI
HDF4 write

w/o 
buffer 

overflow

w. buffer 
overflow



Prelim Result 3: Application-level Prefetching
GODIVA Framework: hides 
periodic input costs behind 
computation phases
[ICDE ’04]

General Object Data 
Interface for Visualization 
Applications
In-memory database 
managing data buffer 
locations
Relational database-like 
interfaces
Developer controllable 
prefetching and caching
Developer-supplied read 
functions

0

100

200

300

400

500

600

700

sim
ple(

O)
sim

ple(
G)

sim
ple(

TG
)

med
ium(O

)
med

ium(G
)

med
ium(TG

)

co
mplex

(O
)

co
mplex

(G
)

co
mplex

(TG)

ex
ec

ut
io

n 
tim

e 
(s

)

computation time visible I/O time



On-going Research

Parallel execution plan optimization
Explore optimization space of bio sequence 
processing tools on large-scale machines
Develop algorithm-independent cost models

Efficient parallel I/O w. scientific data formats
Investigate unified caching, prefetching and buffering


