Runtime Data Management for Data-
Intensive Scientific Applications

Xilaosong Ma

NC State University
Joint Faculty: Oak Ridge National Lab
ECPI: 2005 — 2008




Presentation Roadmap

Problem definition
Proposed approaches
Preliminary results
e On-going research




Data-Intensive Applications on NLCF

e Data-processing applications
e Bio sequence DB queries, simulation data analysis, visualization
e Challenges
e Rapid data growth (data avalanche)
Computation requirement
I/O requirement
needs ultra-scale machines
e Less studied than numerical simulations
Scalability on large machines
e Complexity and heterogeneity
Case-by-case static optimization costly

EUDIE W) S1pE ] 956 g

Fug-04




Run-Time Data Management

e Parallel execution plan optimization

e Example: genome vs. database sequence comparison
on 1000s of processors

e Data placement crucial for performance/scalability

e Issues
Data partitioning/replication
Load balancing

e Efficient parallel I/O w. scientific data formats
e |/O subsystem performance lagging behind

e Scientific data formats widely used (HDF, netCDF)
Further limits applications’ I/O performance

e Issues
Library overhead
Metadata management and accesses




Proposed Approach

e Adaptive run-time optimization
e For parallel execution plan optimization

Connect scientific data processing to relational
databases

Runtime cost modeling and evaluation
e For parallel I/O w. scientific data formats
Library-level memory management

Hiding I/O costs
e Caching, prefetching, buffering




Prelim Result 1: Efficient Data Accesses for
Parallel Sequence Searches

o BLAST

e Widely used bio sequence search tool
e NCBI BLAST Toolkit

e MpiBLAST
Developed at LANL

Open source parallelization of BLAST using database
partitioning

Increasingly popular: more than 10,000 downloads since early
2003

Directly utilizing NCBI BLAST
Super linear speedup with small number of processors




Data Handling in mpiBLAST Not Efficient

Databases partitioned B Other e
statically before search @ Search time
e Inflexible: re-partitioning

required to use different No. of
procs

Management overhead:
generating large number of
small files, hard to manage,
migrate and share

Results processing and output
serialized by the master node

Result: rapidly growing non- - Search 150k queries against NR
search overhead as database

e NO. of procs grows - Non searching time increases

. sharply as number of processors
e OQutput data size grows grows

Time (Seconds)

Number of Processors




PIOBLAST

e Efficient, highly scalable parallel BLAST implementation

e Improves mpiBLAST

e Focus on data handling

e Up to order of magnitude improvement on overall performance
e Currently being merged with mpiBLAST

e Major contributions
e Applying collective I/O techniques to bioinformatics, enabling
Dynamic database partitioning
Parallel database input and result output
e Efficient result data processing
Improved result caching for reducing 1/O

Enhanced worker-master communication for reducing data
transfer volume and removing master bottleneck




PIOBLAST Sample Performance Results

Platform: SGI Altix at
ORNL

e 256 1.5GHz Itanium?2
Processors

e 8GB memory per
processor

Database: NCBI nr (1GB)

Node scalability tests (top
figure)
e Queries — 150k queries
randomly sampled from nr

e Varied no. of processors

Output size scalability
tests (bottom figure)
® 062 processors

e Varied input query sets to
generate different output
data sizes

Execution time (s)

Execution Time (s)

3000

2500

2000

- B l
QQ)@ cz?’@

:\,’\/@ &'\,@ ’\® ’\®

1500

1000

500

B Other time
0 Search time

Q’\fb ofb N .
. S o &S
S &g & ¢ & 3

Program-No. of processes

O Search © Other

@

Program-Output Size




Prelim Result 2: Active Buffering

Hides periodic I/O costs behind computation phases

Organizes idle memory resources into buffer hierarchy
Masks costs of scientific data formats

Panda Parallel 1/0 Library
e University of lllinois
e Client-server architecture
ROMIO Parallel I/O Library
Argonne National Lab
Popular MPI-10 implementation, included in MPICH
Server-less architecture
ABT (Active Buffering with Threads)




Write Throughput w. Active Buffering

—o—|ocal buffering

—— MPI

—&binary write /

-e-|ocal buffering

-2 AB
—— MP|

- HDF4 write /
/.

throughput per server

—=-pinary Write/)//.\\’

S
<))
=>
S
()]
%))
S
(D)
o
+
>
o
=
(@)
>
o
S
=
-+

number of clients

4 8 16
number of clients

w/0
buffer
overflow

w. buffer
overflow




Prelim Result 3: Application-level Prefetching

e GODIVA Framework: hides
periodic input costs behind

computation phases

B computation time Ovisible 1/0 time

General Object Data
Interface for Visualization
Applications

In-memory database
managing data buffer
locations

Relational database-like
Interfaces

Developer controllable
prefetching and caching

Developer-supplied read
functions

execution time (s)




On-going Research

e Parallel execution plan optimization

e Explore optimization space of bio sequence
processing tools on large-scale machines

e Develop algorithm-independent cost models

e Efficient parallel I/O w. scientific data formats
e Investigate unified caching, prefetching and buffering




