Runtime Data Management
for
Data-Intensive Scientific Applications

Xiaosong Ma

NC State University
Joint Faculty: Oak Ridge National Lab
ECPI: 2005 — 2008

DOE Network Pl Meeting 2005

Data-Intensive Applications on NLCF

O Data-processing applications

= Bio sequence DB queries, simulation data analysis,
visualization

o Challenges

= Rapid data growth (data avalanche)
Computation requirement
1/0 requirement
Needs ultra-scale machines

» Less studied than numerical simulatiol
Scalability on large machines %

= Complexity and heterogeneity
Case-by-case static optimization costly

;

wighe

Aug-02
Eaag-03
Fg-04
S0g-05

DOE Network Pl Meeting 2005

SUDNIIY U BIE FERg

Run-Time Data Management

O Parallel execution plan optimization

= Example: genome vs. database sequence comparison on
1000s of processors

= Data placement crucial for performance/scalability

m Issues
Data partitioning/replication
Load balancing

O Efficient parallel 1/0 w. scientific data formats

= |/0O subsystem performance lagging behind

= Scientific data formats widely used (HDF, netCDF)
Further limits applications’ 1/0 performance

m Issues
Library overhead
Metadata management and accesses

DOE Network Pl Meeting 2005

Proposed Approach

O Adaptive run-time optimization

= For parallel execution plan optimization

Connect scientific data processing to relational
databases

Runtime cost modeling and evaluation

= For parallel 1/0 w. scientific data formats
Library-level memory management

Hiding 1/0 costs
= Caching, prefetching, buffering

DOE Network Pl Meeting 2005

Prelim Result 1: Efficient Data Accesses for
Parallel Sequence Searches

O BLAST

= Widely used bio sequence search tool
= NCBI BLAST Toolkit

O MpPIBLAST

= Developed at LANL

= Open source parallelization of BLAST using database
partitioning

= Increasingly popular: more than 10,000 downloads since
early 2003

= Directly utilizing NCBI BLAST

= Super linear speedup with small number of processors

DOE Network Pl Meeting 2005

Data Handling in mpiBLAST Not Efficient

O Databases partitioned
statically before search
» Inflexible: re-partitioning

required to use different
No. of procs

» Management overhead:
generating large number
of small files, hard to
manage, migrate and
share

O Results processing and
output serialized by the
master node

O Result: rapidly growing
non-search overhead as
= No. of procs grows
= Output data size grows

Time (Seconds)

4500

4000

3500

2500 -

2000 -

1500 -

1000 -

500

3000 -

B Other time

O Search time

8

16

32 62

Number of Processors

DOE Network Pl Meeting 2005

- Search 150k queries against
NR database

PIOBLAST

o Efficient, highly scalable parallel BLAST
Implementation [IPDPS '05]
= Improves mpiBLAST
= Focus on data handling

= Up to order of magnitude improvement on overall
performance

= Currently being merged with mpiBLAST

O Major contributions
= Applying techniques to bioinformatics,
enabling
Dynamic database partitioning
Parallel database input and result output
= Efficient
Removing master bottleneck

DOE Network Pl Meeting 2005

PIOBLAST Sample Performan

ce Results

Platform: SGI Altix at
ORNL

m 256 1.5GHz Itanium?2

processors

Ml Other time

m 8GB memory per

O Search time

processor

Database: NCBI nr
(1GB)

Execution time (S)

Node scalability tests
(top figure)
= Queries — 150k

queries randomly
sampled from nr

m Varied no. of
processors

© o

NP X N
& &°

‘ or g
& ° '

& °
Program-No. of processes

DOE Network Pl Meeting 2005

Prelim Result 2: Active Buffering

0 Hides periodic 1/0 costs behind computation phases
[IPDPS ’02, ICS ’02, IPDPS '03, IEEE TPDS (to

appear)]
Organizes idle memory resources into buffer hierarchy

0 Masks costs of scientific data formats

O

o Panda Parallel 1/0 Library
= University of Illinois
= Client-server architecture
o ROMIO Parallel 1/0 Library
Argonne National Lab
Popular MPI-10 implementation, included in MPICH
Server-less architecture
ABT (Active Buffering with Threads)

DOE Network Pl Meeting 2005

1200 1200

—-|ocal buffering —o—|ocal buffering

E) 1000 — -2 AB R EE— 1000 +AB
Z —— MPI —A— MPI
o LR — —=binary write R s HDE4 write w/o
C ~ buffer
o ¥ w0 600
50 overflow
g-v 400 400
(@) E J/
>
9 200 200
<
0 0
2 4 8 16 32 2 4 8 16 32
number of clients number of clients
250
3@ 200
S om
o= 150 w. buffer
S
= 100 overflow
S >
O | -
- @
i 50
0
2 4 8 16 32 2 4 8 16 32
number of clients number of clients

DOE Network Pl Meeting 2005

O GODIVA Framework: hides
periodic input costs behind

computation phases
[ICDE '04]

General Object Data
Interface for Visualization
Applications

In-memory database
managing data buffer
locations

Relational database-like
Interfaces

Developer controllable
prefetching and caching

Developer-supplied read
functions

execution time (s)

700

600

500

400

300

200

100

B computation time Ovisible I/O time

DOE Network Pl Meeting 2005

On-going Research

O Parallel execution plan optimization

= Explore optimization space of bio sequence processing
tools on large-scale machines

= Develop algorithm-independent cost models

O Efficient parallel 1/0 w. scientific data formats
= Investigate unified caching, prefetching and buffering

0 DOE Collaborators
= Team led by Al Geist and Nagiza Samatova (ORNL)
= Team leb by Wu-Chun Feng (LANL)

DOE Network Pl Meeting 2005

