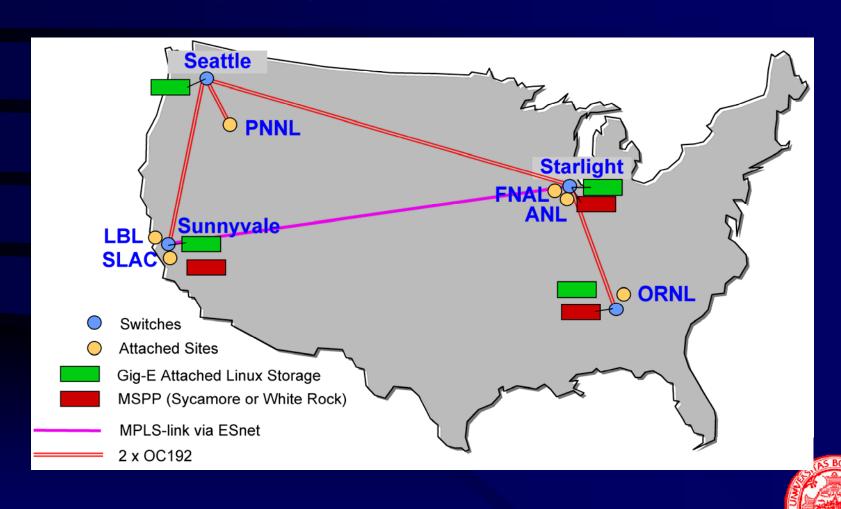
A Theory of Stability for Communication Networks

PI: David Starobinski Boston University

> DOE PI Meeting BNL 09/28/2005

Acknowledgment

- Work supported in part by the DOE Office of Science, under an ECPI grant
- ORNL Collaborator: Dr. Nageswara Rao
- BU collaborators: Dr. Reuven Cohen, Niloofar Fazlollahi, Andres Guedez, Edy Tan



Research Thrusts

• Thrust 1: Formal methods and algorithms to ensure stability of control-plane protocols

- Thrust 2: Design and modeling of resource allocation mechanisms for Ultra Science 10000 Net
 - Algorithmic design
 - Simulation and visualization tools

DOE Ultra Science Net

Ultra Science Net: Unique Features

Channels (bandwidth) dedicated to users on demand

• Fine-grained bandwidth allocation (100's MB/s to 20 Gb/s) using SONET or 10GigE

Ultra Science Net: User Request Format

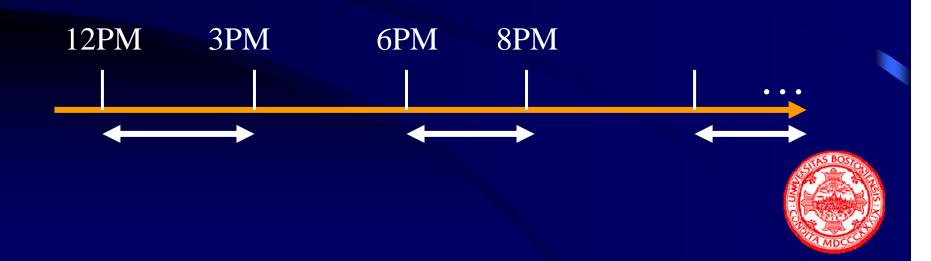
Src s and dest d...ORNL and PNNL

Src s and dest d...ORNL and PNNL Bandwidth B ... 1 Gb/s

Ultra Science Net: User Request Format

Src s and dest d...ORNL and PNNL Bandwidth B... 1 Gb/s
Time interval T...2 Hours

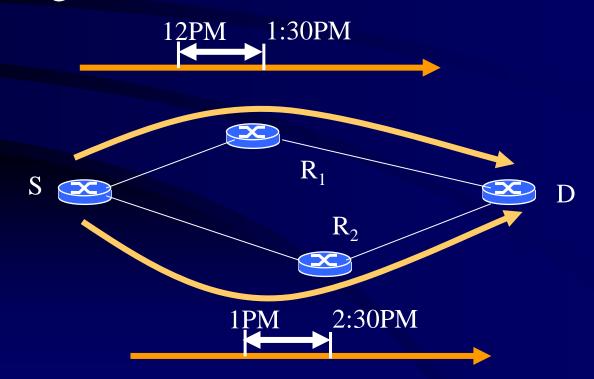
Ultra Science Net: User Request Format



Src s and dest d...ORNL and PNNL Bandwidth B... 1 Gb/s
Time interval T...2 Hours
Starting time (optional)? 09/29/2005
12PM

All-Slots Algorithm

• Return all the time slots for a path of bandwidth *B* and duration of at least *t* between a source *s* and destination *d*


All-Slots Algorithm: Properties

- Use the same path over the entire connection
- Returns a feasible path, if several are available

Observation #1

 Possible to achieve significant performance improvement if path switching is allowed during a connection

Contribution #1: All-Slots/Path-Switching Algorithm

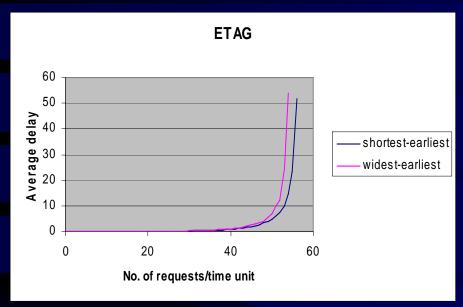
- Return all available time-slots where it is possible to establish a connection (possibly switching between different paths) between a source *s* and destination *d* with bandwidth *B* and duration at least *t*.
- Complexity: $O(|V|^2R)$
 - |V| is the number of vertices in the graph
 - R is the number of pending connections already scheduled
- Number of path switching during a connection upper bounded by 2R

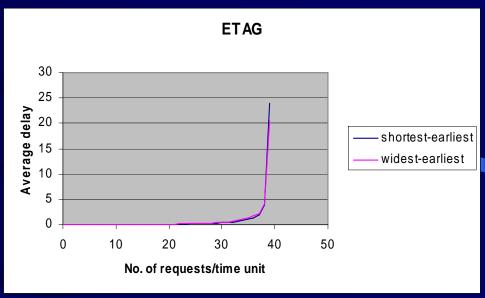
Contribution #2: Optimized Path Selection Algorithm

- When several different paths are available in a given time slot, compute the "best" one according to some heuristics
 - Shortest path
 - Widest path
 - **–**
- Can be implemented in conjunction with either variants of All-Slots algorithms
- Polynomial complexity

Simulator (Work-in-progress)

- Tool to compare performance of different bandwidth allocation mechanisms
- Key performance metrics are:
 - Average delay
 - Throughput

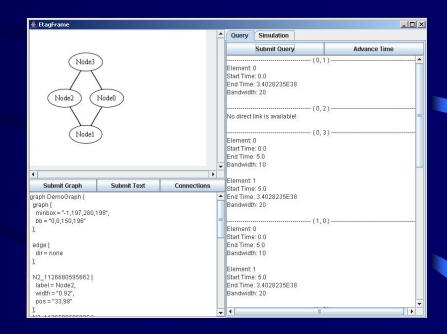



Simulation Parameters

- Network topology
- Rate of arrivals λ
- Distribution of BW request
 - Uniform (1,10) Gb/s
 - 80-20: 80% request-1Gb/s, 20%-request 10Gb/s
- Destination
 - Random
 - Hot spot (50% of requests go to a certain node, rest is uniformly distributed)
- Transfer size
 - Exponential distribution
 - Heavy tailed distribution

Typical Simulation Results

Random destination model


Hot spot model

Performance is sensitive to workload model!

Simulator GUI

- Designed to help understand bandwidth allocation mechanisms
- Currently allows manual requests
- Allows visualization of graph using Grappa library

Future Work

- All-Slots/Path-Switching Algorithm
 - Design and analysis
 - Simulation
 - Implementation over Ultra Science Net
- Comparison of heuristics for path selection, when multiple paths are available
- Workload characterization

Web Page

http://nislab.bu.edu/nislab/projects/stability/index.html

