
Enabling Supernova Computations on
Dedicated Channels

Malathi Veeraraghavan
University of Virginia

mv@cs.virginia.edu

Acknowledgment

• Thanks to the DOE MICS R&D program
– DOE DE-FG02-04ER25640

• Graduate students
– Zhanxiang Huang
– Anant P. Mudambi
– Xiuduan Fang
– Xiangfei Zhu

• Postdoc fellow
– Xuan Zheng

• CHEETAH project co-PIs:
– ORNL, NCSU CUNY

UVA work items - 3 tracks

• Provisioning across CHEETAH and
UltraScience networks

• Transport protocol for dedicated
circuits

• Extend CHEETAH concept to enable
heterogeneous connections –
“connection-oriented internet”

CHEETAH Network
(data-plane)

Cisco
7600
switch

1G
Compute-0-4

Orbitty Compute Nodes

1G
OC192 OC192 GbE

1-8-33
1-8-34
1-8-35
1-8-36

1-6-1

1-6-17
1-8-37

Cisco
7600
switch

H
H
H
H

H 1G
1G
1G
1G

1-7-1

Compute-0-3
Compute-0-2
Compute-0-1
Compute-0-0

1G
1G
1G
1G

wukong H

1G1-8-38
1-7-17

cheetah-nc

5x1Gbps
VLAN

OC192

1-6-1

1-6-17

10GbE

1-7-1

GbE
1-7-33
1-7-34
1-7-35
1-7-36
1-7-37
1-7-38
1-7-39

1G
Zelda1

H
H

H
1G
1GZelda2

Zelda3
1G

1G

Zelda4
H
H

Zelda5

2x1Gbps
MPLS tunnels

1G
1G

Cheetah-atl

OC-192 lamda

10GbEGbE
1-7-33
1-7-34
1-7-35
1-7-36

Cheetah-ornl

1-7-1 1-6-1

OC192

X1(E)UCNS
1GFC1G

1G

Juniper
320

router

Juniper
320

router

1G

1G

Force10
E300

switch

ORNL

Atlanta

NC

Direct fibers

VLANs
MPLS tunnels

1Gbps
VLAN

USN

CHEETAH nodes at the three PoPs

• Sycamore SN16000 intelligent
optical switch
– GbE, 10GbE, and SONET interface

cards (we have OC192s)
– Switch OS - BroadLeaf – implements

GMPLS protocols since Release 7.0
• Pure SONET circuits – excellent GMPLS

signaling and routing support
• Ethernet-to-SONET GMPLS standards

not officially released yet
• But Sycamore provided us a proprietary

solution - it is quite stable

Distributed signaling implemented
(RSVP client software for end host done)

SN16000

GbE
Control
Card OC192

SN16000

GbE
Control
CardOC192

End
Host

NIC1
NIC2 End

Host

NIC1
NIC2

RSVP-TE Path

RSVP-TE Path
RSVP-TE Path

BroadLeaf Message
RSVP-TE Resv

bwlib integrated into FTP code
for automatic initiation of circuit
by end application software

Call setup delay measurements

0.0086500.0908520.165450OC3

0.0086974.9071134.9820711Gbps
Ethernet/EoS

0.0086890.0911190.166103OC1

RESV
processing
delay at
the SN16k-NC

PATH
processing
delay at
the SN16k-NC

End-to-end
circuit setup
delay (s)

Circuit
type

21 OC1 on SONET side are set up one at a time
21 x 0.166 + 21 x 0.025 = ~4sec

propagation + emission delays

Key results

• Distributed GMPLS signaling + routing using
off-the-shelf switches works well!

• GMPLS control-plane protocols suitable for
– Only call blocking mode of bandwidth sharing
– Immediate-request calls, not book-ahead

• If the number of circuits (m) sharing the link
is small (order of 10), e.g. 1Gbps on 10Gbps
link
– Either call blocking probability will be high
– Or link utilization will be low

Call blocking probability as a function of
utilization, U, and number of circuits, m

UVA work items - 3 tracks

• Provisioning across CHEETAH and
UltraScience networks
Transport protocol for dedicated
circuits

• Extend CHEETAH concept to enable
heterogeneous connections –
“connection-oriented internet”

FTP over TCP across circuit
seems to do best!

388368620515787644664510610853600629FRTPv1

51387379425611N/AN/AN/A657607500N/ABBCP

N/AN/A282264542530368456422537545524Hurricane

479520610463848638404470624488770640SABUL

13026.424.326.318.74117.917.335.134.918.825SFTP

620N/A722*702479878458702585585552752FTP

Disk-to-disk transfers (1.3GB file)

645750727653913800830646957957913888Iperf UDP

933N/AN/A934934933900931938938924938Iperf TCP

Memory-to-memory transfers

18.7513.732RTT (ms)

wukong -
compute-0-0

zelda3 -
wukong

zelda3 -
compute-0-0

zelda4 -
wukong

zelda4 -
zelda3zelda4 -

compute-0-0

First attempt

• Fixed-Rate Transport Protocol (FRTP)
– User-space implementation
– UDP-based solution
– Null flow control

• Thought we could estimate receive rate (disk bottleneck)
• Use this as circuit rate
• Stream data from sender at this (fixed) circuit rate

– Hard to do the above because of
• Variability in disk receive rate
• Multitasking hosts (general-purpose)

– CPU-intensive solution for maintaining constant
sending rate

Decided to modify TCP

• Reasons
– Due to failure of null flow control solution, we

decided on window based flow control
• best out of three: ON/OFF and rate based
• need kernel-level implementation for window control

– Self-clocking in TCP works well to maintain fixed
sending rate

• Busy wait discarded due to high CPU utilization
• Signals and timers unreliable

– TCP implementation + Web100 stable and fast

Protocol Design
• Congestion control: Control plane function

– TCP's data-plane congestion control redundant
• Flow control: Window based
• Error control: Required for reliable transfer

– Thought we could use just negative ACKs because of in-
sequence delivery characteristic of circuits

– But cost of retrieving errored frames from disk high
– Need positive ACKs to remove packets held in retransmission

buffers
• Multiplexing: TCP's port solution usable with circuits
• Conclusion: TCP’s mechanisms suitable for all but

congestion control

Hence Circuit-TCP
How does it differ from TCP?

• Data plane
– Slow Start/Congestion Avoidance removed
– Sender sends at the fixed rate of circuit

• Control plane
– TCP has three-way handshake (host-to-

host) to synchronize initial sequence
numbers

– Circuit-TCP determines rate to use for the
transfer and initiates request for circuit

Implementation Issues

• Selecting the rate of the circuit
– End-hosts usually a bottleneck, esp., for disk-to-

disk transfers. Difficult to pin down a constant
bottleneck rate for the whole transfer

– Pragmatic approach:
• Minimize sources of variability (e.g., avoid multitasking)
• Use an empirical estimate of the receiver’s disk write

rate

• Maintaining the sending rate at the circuit
rate

Linux implementation
Sender:
• Try to maintain fixed amount of outstanding data in

network

• In TCP implementation replace min(cwnd, rwnd) by
min(ncap, rwnd)

• 2 requirements
– C-TCP and TCP co-exist
– If socket is C-TCP then the kernel needs to know ncap for

the socket
• Web100 provides API that was extended to meet

these 2 requirements

ncap (>= BDP = circuit rate * RTT)

Linux implementation

Receiver:
• Linux increments advertised window in a

slow start-like fashion
• So for the initial few RTTs, at the

sender min(ncap, rwnd) = rwnd, leading
to low circuit utilization

• To avoid this, for C-TCP, we modified
this code

Three sets of results

• "Small" memory-to-memory transfers
– up to 100MB
– 1Gbps circuit, RTT: 13.6ms

• How RTT varies - sustained sending rate
– 500Mbps SONET circuit; RTT: 13.6ms
– Sycamore gateway will buffer Ethernet

frames since sending NIC will send at
1Gbps

• Disk-to-disk: 1.6GB over a 1Gbps circuit

"Small" memory-to-memory transfers

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 100 1000 10000 100000

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

A
ve

ra
ge

 th
ro

ug
hp

ut
(M

bp
s)

R
el

at
iv

e
de

la
y

Amount of data transferred (KB)

Relative delay
TCP

C-TCP

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

Amount of data transferred (KB)

R
el

at
iv

e
de

la
y

Relative delay
TCP

C-TCP

RTT variation: Reno TCP

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600

R
TT

 (m
s)

Time (seconds)

 0

 100

 200

 300

 400

 500

 600

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

R
TT

 (m
s)

Th
ro

ug
hp

ut
 (M

bp
s)

RTT variation: BIC-TCP

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600

R
TT

 (m
s)

Time (seconds)

 0

 100

 200

 300

 400

 500

 600

Th
ro

ug
hp

ut
 (M

bp
s)

Time (seconds)

R
TT

 (m
s)

Th
ro

ug
hp

ut
 (M

bp
s)

RTT variation: C-TCP

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 100 200 300 400 500 600

R
TT

 (m
s)

Time (seconds)

 0

 100

 200

 300

 400

 500

 600
Th

ro
ug

hp
ut

 (M
bp

s)

Time (seconds)

R
TT

 (m
s)

Th
ro

ug
hp

ut
 (M

bp
s)

Disk-to-disk: 1.6GB; 1Gbps circuit

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t(

M
bp

s)

Experiment run number

TCP
FRTP

Experiment run number

Th
ro

ug
hp

ut
 (M

bp
s)

TCP
C-TCP

UVA work items

• Provisioning across CHEETAH and
UltraScience networks

• Transport protocol for dedicated
circuits: Fixed-Rate Transport Protocol
(FRTP)
Extend CHEETAH concept to enable
heterogeneous connections –
“connection-oriented internet”

Connection-oriented internet

• Cisco and Juniper routers implement
– MPLS (user-plane)
– RSVP-TE (control-plane)

• Many vendors’ Ethernet switches
– Untagged (port-mapped) VLANs
– Tagged VLANs with priority queueing
– Add external GMPLS controller

Design of signaling procedures

• Key idea
– Signaling message encapsulation

• Decreases delay - multiple RTTs avoided
– Combine with Interface Adaptation

Capability Descriptor (IACD)
• CSPF not very useful

– TE-LSAs only intra-area within OSPF
– Inter-domain - topology hiding

Recently completed papers
• A. P. Mudambi, X. Zheng, and M. Veeraraghavan, “A

transport protocol for dedicated circuits, submitted
to IEEE ICC 2006.

• X. Zhu, X. Zheng, M. Veeraraghavan, Z. Li, Q. Song, I.
Habib N. S. V. Rao, “Implementation of a GMPLS-
based Network with End Host Initiated Signaling,”
submitted to IEEE ICC 2006.

• M. Veeraraghavan, X. Fang, X. Zheng, “On the
suitability of applications for GMPLS networks,”
submitted to IEEE ICC 2006.

• M. Veeraraghavan, X. Zheng, Z. Huang, “On the use of
GMPLS networks to support Grid Computing,”
submitted to IEEE Communications Magazine.

