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UVA work items - 3 tracks

• Provisioning across CHEETAH and 
UltraScience networks

• Transport protocol for dedicated 
circuits

• Extend CHEETAH concept to enable 
heterogeneous connections –
“connection-oriented internet”
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CHEETAH nodes at the three PoPs

• Sycamore SN16000 intelligent 
optical switch
– GbE, 10GbE, and SONET interface 

cards (we have OC192s)
– Switch OS - BroadLeaf – implements 

GMPLS protocols since Release 7.0
• Pure SONET circuits – excellent GMPLS 

signaling and routing support
• Ethernet-to-SONET GMPLS standards 

not officially released yet
• But Sycamore provided us a proprietary

solution - it is quite stable



Distributed signaling implemented
(RSVP client software for end host done)
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Call setup delay measurements
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21 OC1 on SONET side are set up one at a time
21 x 0.166 + 21 x 0.025 = ~4sec

propagation + emission delays



Key results

• Distributed GMPLS signaling + routing using 
off-the-shelf switches works well!

• GMPLS control-plane protocols suitable for
– Only call blocking mode of bandwidth sharing
– Immediate-request calls, not book-ahead

• If the number of circuits (m) sharing the link 
is small (order of 10), e.g. 1Gbps on 10Gbps 
link
– Either call blocking probability will be high
– Or link utilization will be low



Call blocking probability as a function of 
utilization, U, and number of circuits, m



UVA work items - 3 tracks

• Provisioning across CHEETAH and 
UltraScience networks
Transport protocol for dedicated 
circuits

• Extend CHEETAH concept to enable 
heterogeneous connections –
“connection-oriented internet”



FTP over TCP across circuit
seems to do best! 
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First attempt

• Fixed-Rate Transport Protocol (FRTP)
– User-space implementation
– UDP-based solution
– Null flow control

• Thought we could estimate receive rate (disk bottleneck)
• Use this as circuit rate
• Stream data from sender at this (fixed) circuit rate

– Hard to do the above because of
• Variability in disk receive rate
• Multitasking hosts (general-purpose)

– CPU-intensive solution for maintaining constant 
sending rate



Decided to modify TCP

• Reasons
– Due to failure of null flow control solution, we 

decided on window based flow control
• best out of three: ON/OFF and rate based
• need kernel-level implementation for window control

– Self-clocking in TCP works well to maintain fixed 
sending rate

• Busy wait discarded due to high CPU utilization
• Signals and timers unreliable

– TCP implementation + Web100 stable and fast



Protocol Design
• Congestion control: Control plane function

– TCP's data-plane congestion control redundant
• Flow control: Window based
• Error control: Required for reliable transfer

– Thought we could use just negative ACKs because of in-
sequence delivery characteristic of circuits

– But cost of retrieving errored frames from disk high
– Need positive ACKs to remove packets held in retransmission 

buffers 
• Multiplexing: TCP's port solution usable with circuits
• Conclusion: TCP’s mechanisms suitable for all but 

congestion control



Hence Circuit-TCP
How does it differ from TCP?

• Data plane
– Slow Start/Congestion Avoidance removed
– Sender sends at the fixed rate of circuit

• Control plane
– TCP has three-way handshake (host-to-

host) to synchronize initial sequence 
numbers

– Circuit-TCP determines rate to use for the 
transfer and initiates request for circuit  



Implementation Issues

• Selecting the rate of the circuit
– End-hosts usually a bottleneck, esp., for disk-to-

disk transfers. Difficult to pin down a constant 
bottleneck rate for the whole transfer

– Pragmatic approach: 
• Minimize sources of variability (e.g., avoid multitasking)
• Use an empirical estimate of the receiver’s disk write 

rate

• Maintaining the sending rate at the circuit 
rate



Linux implementation
Sender:
• Try to maintain fixed amount of outstanding data in 

network

• In TCP implementation replace    min(cwnd, rwnd) by 
min(ncap, rwnd)

• 2 requirements
– C-TCP and TCP co-exist
– If socket is C-TCP then the kernel needs to know ncap for 

the socket
• Web100 provides API that was extended to meet 

these 2 requirements 

ncap (>= BDP = circuit rate * RTT)



Linux implementation

Receiver:
• Linux increments advertised window in a 

slow start-like fashion
• So for the initial few RTTs, at the 

sender min(ncap, rwnd) = rwnd, leading 
to low circuit utilization

• To avoid this, for C-TCP, we modified 
this code



Three sets of results

• "Small" memory-to-memory transfers
– up to 100MB
– 1Gbps circuit, RTT: 13.6ms

• How RTT varies - sustained sending rate
– 500Mbps SONET circuit; RTT: 13.6ms
– Sycamore gateway will buffer Ethernet 

frames since sending NIC will send at 
1Gbps

• Disk-to-disk: 1.6GB over a 1Gbps circuit



"Small" memory-to-memory transfers
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RTT variation: Reno TCP
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RTT variation: BIC-TCP
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RTT variation: C-TCP
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Disk-to-disk: 1.6GB; 1Gbps circuit
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UVA work items

• Provisioning across CHEETAH and 
UltraScience networks

• Transport protocol for dedicated 
circuits: Fixed-Rate Transport Protocol 
(FRTP)
Extend CHEETAH concept to enable 
heterogeneous connections –
“connection-oriented internet”



Connection-oriented internet

• Cisco and Juniper routers implement
– MPLS (user-plane)
– RSVP-TE (control-plane)

• Many vendors’ Ethernet switches
– Untagged (port-mapped) VLANs
– Tagged VLANs with priority queueing
– Add external GMPLS controller



Design of signaling procedures

• Key idea
– Signaling message encapsulation

• Decreases delay - multiple RTTs avoided
– Combine with Interface Adaptation 

Capability Descriptor (IACD)
• CSPF not very useful

– TE-LSAs only intra-area within OSPF
– Inter-domain - topology hiding
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