Lightweight High-performance I/O for Data-intensive Computing

Jun Wang

Computer Architecture and Storage System Laboratory (CASS)

Computer Science and Engineering Department University of Nebraska-Lincoln

Background

- □ Technology trend
 - A steadily widening gap between CPU and disk
- □ Parallel I/O technique is a main weapon to address the I/O issue in HPC
 - MPI-IO
- As cluster becomes ever important in HPC, there is a need for developing scalable, high-performance parallel file system for cluster computing
 - Parallel Virtual File System and its current and future versions (PVFS2,...)
 - Lustre File System
 - IBM GPFS

New Facts and Challenges

- □ Fact: developing modern high-performance parallel file system has become increasingly complex
- New Challenges
 - Temporary/derivation file I/Os are accounting for a significant percentage in many scientific and engineering applications
 - The demand imposed by the petabyte-scale data storage outstrips the ability of present underlying file storage systems
 - Intra-cluster communication becomes an ever-important issue among large-scale clusters

Our Solution

- Develop new portable, customized I/O management components as extensions to state-of-the-art parallel file systems
- □ Rationale
 - Shorten the development cycle
 - Tuning to the specifics at hand could potentially increase the performance and scalability

Three Specific Research Components

- □ Local File I/O (User Space)
 - A lightweight, locality-aware, segment-structured local file system (LL-SFS)
- □ Metadata File I/O (Middleware)
 - A customized, scalable distributed file mapping scheme (Location-aware Summary Content Filters or Hierarchical Bloom filter Array)
- □ Intra-cluster I/O (User Space & Middleware)
 - An application-level RDMA-based I/O cache manager (CacheRDMA)

Incorporating three lightweight I/O components into PVFS2

Task 1:Lightweight, Local File System

- □ Local file I/O is critical to the overall system performance, especially for commodity PC clusters.
 - Relatively smaller buffer cache size, expensive metadata I/O, fragmented disk layout, etc.
- We are developing an LL-SFS API interface for PVFS2.
 - A specific collaborative work: Improving non-contiguous I/O performance at local file I/O level, for small file I/Os in particular.

Task 2: A Customized, Scalable, Distributed File Mapping Scheme

- □ Skewed Load to Metadata
 - Metadata operations may make up to over 50% of all file system operations
- □ We are developing two file lookup schemes for PVFS2
 - Location-aware summary filter arrays and hierarchical bloom filter arrays
 - How to implement? E.g., work with file permission check
- We are developing novel metadata grouping schemes for multi-metadata server environment

Task 3: Application-level RDMA-based I/O Cache Manager

- RDMA is an increasingly popular data communication technique currently adopted by cluster systems
- □ Study the breakdown of processing overhead for iSCSI applications over RDMA protocol suite on both client and server sides

