Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

Vern Paxson Nicholas Weaver

José María González

International Computer
Science Institute
&

International Computer Science Institute **UC Berkeley**

Lawrence Berkeley National Laboratory

The Problem: Intrusion Detection and Response

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- Network Intrusion Detection System
 - Monitors the traffic between the local network and the Internet
 - Attempts to detect and log attacks
- Network Intrusion Prevention System
 - IDS now tries to block attacks in progress
 - Before the victim can be compromised
 - Also block subsequent attacks from an offending system
- Terms are often used interchangeably
 - We will use the term IDS to describe both goals:
 logging of attacks and blocking attacks as they occur
- We want IDSs because they allow a "Default Allow" policy rather than a "Default Deny"
 - Default allow enables greater collaboration, which is vital for scientific research mission

We Need Some Enhancements

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- Unfortunately, the current state-of-the-art is limited
- Need better scalability:
 - Techniques for 1 Gbps (prototyping and general deployment)
 - Ideally low cost deployment
 - Scalable to 40 Gbps
 - 40 Gbps networks are "special": Flows are dominated by traffic the IDS is not interested in, such as large experimental dataset transfers
 - 40 Gbps is way beyond the state of the art
- Need inline operation:
 - All traffic passes through the IDS
 - The IDS, not router ACLs, can block individual sources or terminate individual connections
 - Router-based blocking has scalability problems in the face of 1000s to 10,000s of hostile systems attack a network
 - Router-based blocking can't effectively halt an attack-in-progress
 - Need to drop without burdening security administrators
 - Easy to do for 100 Mbps, but very challenging for 1 Gbps+
- Leverage the Bro Intrusion Detection Systems
 - Already deployed at multiple, very-high-performance open facilities
 - High level policy-based analysis engine

Key Observation: For an IDS, most traffic is uninteresting

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- All the traffic needs to flow *through* the IDS...
 But most of the traffic doesn't need to be examined *by* the IDS
 - Scientific research traffic volume is dominated by a few very-large bulk transfers
 - Encrypted connections (ssh, https/ssl, vpn connections)
 - At least after the connections are properly setup
- Yet the IDS must see all connections as they occur
 - Even for encrypted data, session initiation needs to be monitored
 - And when to stop monitoring may be very protocol specific
 - Thus we can't use a simple ACL in a router to redirect some traffic through the IDS
 - And the IDS must block known sources of bad traffic
- Idea: Allow the IDS to control what it sees
 - Using a programmable network filter element
 - Filter element can also handle blocks
 - Develop policies which can utilize this element

We Are Developing Both Mechanism and Policy

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- Mechanism: The Shunt
 - A hardware device to allow the IDS to control what it sees
- Key Idea: Table-based decisions
 - Every packet header is looked up in a series of tables
 - Highest priority match is used
 - Packet is then directed either to the IDS, to the destination, or dropped
- Mechanism is "hardware friendly"
 - No per-byte work or pointer chasing
 - Fixed memory amounts and access
 - Limited queueing required
- Prototype designed for scalability
 - Targeting 1 Gbps but ensuring scalability
 - Limited memory access
 - Small & narrow FPGA datapaths

- Policy: Shunting
 - How to use a shunt to enhance the Bro IDS
 - Both with and without the presence of a hardware shunt
- Software for managing a shunt
 - Understands a Shunt's capacity limitations
 - Provides an "unlimited" abstraction to Bro
- Enhancing policy scripts with shunt control
- Evaluating what traffic must be seen by the IDS and what can be ignored
- Ensuring that the mechanism is useful
 - Policy must dictate mechanism's capabilities

The Mechanism: The Shunt

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- The *Shunt*: A device which an IDS can use to control what it sees
 - For a given packet, either:
 - Forward the packet onward toward the destination
 - Drop the packet
 - Sample/mirror: Send the packet on and send a copy to the IDS
 - Divert: Forward the packet to the IDS
 - The IDS then decides whether to forward the packet or not
- The Shunt's mechanism: Fixed-address table lookup
 - Based on the packet headers, look in several tables to find the action
 - If no entries, use a default behavior: Divert the packet to the IDS
 - Easy to implement both in software and hardware
 - Fixed small memories: A few MB
 - Fixed memory access patterns: <5 memory accesses per packet

The Shunt's Mechanism

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- For each packet, extract the IP/TCP headers
 - Look up the source and destination IPs in the IP_table
 - Look up the connection tuple in the Connection_table
 - Look up the IP/TCP flags in the Flags_table
 - The IDS can change the entries in all the tables
- Each entry (if valid) has an action and priority
 - Forward: Pass the packet onward without notifying the IDS
 - Drop: Block the packet without notification
 - Sample: With probability P, send a copy to the IDS
 - Divert (Default): Pass the packet to the IDS for decision
 - The IDS then decides whether to forward the packet or drop it
- This allows the IDS to control what it sees
 - Block hosts which are known to be malicious
 - The IDS can examine and block all possibly dangerous traffic
 - While allows connections which the IDS has concluded are "safe" to not bother the IDS anymore
 - Add an entry into the connection table

Single-Sided Error in the Shunt

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- The shunt's tables may be incomplete
 - In order to bound the memory access and total memory requirements, the tables will need to evict entries due to lack of space
 - Even for software, fixed access patterns offer performance advantages
- Default shunting behavior limits the damage
 - A falsely evicted entry returns to default-shunt
 - Evictions in the IP or connection table must also have a corresponding eviction in the connection table
 - Don't want to cause ordering problems by having conflicting evictions
- Thus the shunt doesn't require 100% accuracy
 - Rather, it is an approximate device which relies on the IDS system to maintain full state
 - Errors are "safe", any bad eviction decision by the Shunt gets reviewed by the IDS

Other Experiences With Hardware Development

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

Vern Paxson, Nicholas Weaver, and José María González

- On previous board, verified:
 - Gbps operation of key components
 - Multiple Gigabit Ethernets at line rate
 - Customized FIFOs
 - Header extraction
 - Address-encryption for table lookups
 - All components at 125 MHz/8b datapath -> GigE line rate
 - Easily fits within hardware budget
- Very low latency architecture:
 - For forwarded packets, latency measured in nanoseconds
 - Assume that a packet is "good"
 - Packets which must be shunted or dropped are halted by declaring an *underrun* to the Ethernet MAC:

The packet is corrupted and ignored by the recipient

Don't need to receive entire packet before sending it on

The Shunt: Status

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- Software implementation running and stable, coupled with Bro
 - Been running for multiple weeks on real traffic in ICSI's LAN
 - So all packets for several systems are passing through the Shunt coupled to Bro
 - Running on multiple hour traces of LBNL traffic
- Hardware implementation delayed:
 - Switching to a new platform: NetFPGA2
 - New board offers 4xGigE, 4 MB SRAM, PCI interface, coupled to an FPGA
 - Several advantages:
 - Better support
 - Including net drivers
 - Tighter coupling with host
 - Simplifies design
 - Able to prototype multi-board solution for scalability
 - 10-GigE boards have a similar interface
 - Much lower cost
 - Can deploy more instances

Shunting: Policies using a Shunt

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- Just having a mechanism is insufficient: need policies to *use* the shunt
- Bro has been modified to allow scripts to change the state of the shunt for a particular connection
- We are constructing analyzers to use this mechanism
 - E.G. the ssh analyzer observes connection setup, but then will cut through the remaining traffic once the connection is well established

How Effective Is Shunting?

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- Some testing:
 - A ~2 hour, ~1.2M connections, ~127M packet, ~113 GB trace of LBNL running through Bro with a Shunt
 - Only some Bro policies take advantage of shunting
- Only 25% of the packets and 19% of the data needs to be examined by the IDS
 - For the traffic examined by Bro, 80% of the bytes were HTTP traffic
 - Large data transfers for images/files
 - 1/2 of the remaining traffic were three protocols (SMTP, HTTPS, IMAP/SSL) where the analyzers didn't include shunting capability
- Evaluating mechanisms to reduce this traffic further
 - A "length" field on the connection table: Forward this connection until L bytes have been transmitted
 - Would allow the IDS to bypass larger items within a connections

Summary

Shunting: Detecting and Blocking Network Attacks at Ultra-High Speeds

- The Shunt, a new mechanism for IDS:
 - A mechanism for the IDS to control what traffic it examines
 - And the ability to block any offending traffic
 - Software implementation: Tested and stable, running for months
 - Hardware implementation: 1Gbps prototype in development
 - Algorithms scale to 10-40 Gbps applications
- Shunting, policies using a Shunt:
 - Effective at greatly reducing the traffic through the IDS
 - Current policies reduce traffic load by >75%
 - Some improved policies should reduce the load by >90%
 - Allows Bro to act as an IPS
 - Detect and block attacks
 - Tested in the real world
 - Active deployment in ICSI's LAN
 - Off-line testing using traces of LBNL's access link
 - Test deployment at LBNL in ~2 months