Firewall Architectures for High-Speed Networks

Errin W. Fulp

DOE Network Research PI Meeting September 28, 2005

Project Objectives

Methods that improve network firewall performance

1. Develop policy optimization techniques

- Formal models for rules and security policies
- Reduce processing requirement per packet
- Low impact solutions for current and future firewalls
- Models used to distribute rules in parallel firewalls

2. High-speed firewall designs

- One policy, distributed firewalls, parallel processing
- Maintain QoS requirements and differentiation
- Scalable with increasing speeds and volumes
- Robust (highly available), able to survive DoS attacks

Research Progress

- Three year DOE ECPI project
 - First year: firewall policies and analytical models
 - Second year: firewall designs and rule distribution

- Third year: hybrid and dynamic firewall designs
- Network Security Group at Wake Forest University
 - Errin Fulp, Ryan Farley, and Steve Tarsa

Policy Optimization

Reduce comparisons while maintaining integrity

1. Optimize the policy, best arrangement (NP-hard)

		Source		Destination			
No.	Proto.	IP	Port	IP	Port	Action	Prob.
1	UDP	1.1.*	*	*	80	deny	0.01
2	TCP	2.*	*	1.*	90	accept	0.02
3	UDP	*	*	1.*	*	accept	0.10
4	TCP	2.*	*	1.*	20	accept	0.17
5	UDP	1.*	*	*	*	accept	0.20
6	*	*	*	*	*	deny	0.50

Firewall policy

Policy DAG

Linear arrangement

- Optimized list reduces number of compares (upto 80%)
- Rule compression and expansion

2. New **non-linear** representation

- Policy trie requires 1/k compares
- Policy trie optimization

Distributed Firewall Designs

- Three distributed designs
 - Data parallel, distribute packets
 - Function parallel, distribute rules
 - Hierarchical, distribute packets and rules

Data-parallel

scalable, redundant, stateful inspection difficult, no differentiation

Function-parallel

faster than data, scalable stateful, redundant?, no differentiation

Hierarchical

potentially fastest, stateful, differentiation possible, rule distribution difficult

Function Parallel

- Each node has a portion of the policy
 - Every packet processed by each node, and informs gate
 - Gate make final decision based on the policy DAG
- Results for 4-node parallel firewall

- Function parallel 3 to 3.5 times better than data-parallel
- Gate is an additional delay, prefer to eliminate

Eliminating the Gate

- Possible to remove the gate machine
 - Must distribute rules so only one node accepts
 - Use policy DAG and trie to guide decisions (integrity)
- Consider a policy and two node function-parallel

No.	Proto.	SIP	SPort	DIP	DPort	Action
1	UDP	1.*	*	*	*	accept
2	UDP	* * 1.* *		*	accept	
3	TCP	2.*	*	*	*	accept
4	TCP	*	*	2.*	*	accept
5	*	*	*	*	*	deny

Distribution using DAG, requires no gate

- Function parallel design is becoming hierarchical
 - Nodes are designed to handle certain types of traffic
 - Maintains QoS, isolate DoS attacks

Continuing Research

- Finalize proofs for rule distribution
 - Eliminate gate and maintaining integrity
 - Use policy profile to optimize performance
- Create a redundant gate-less design

- Use policy DAG and trie to distribute rules
- Gateless performance with redundant attributes
- Dynamic array of firewall nodes
 - Function parallel is not always better...
 - Use queueing theory to determine optimal design
 - Data and/or function parallel distribution

Synergistic Activities

- Cyber Security Group at PNNL, Summer 2005
 - Deborah Frincke, John McCoy, Tom McKenna, and Patrick Wheeler (UC Davis)
 - High-speed firewall and IPS designs
 - Developed policy optimization techniques
- New Start-up Company, Spring 2005
 - High-speed firewall and IDS/IPS solutions
 - Two patents pending (firewall optimization, rule distribution, and distributed architectures)
 - Business plan developed
 - Initial implementation at WFU and testing at NC State
 - Seeking funding/initial investors, possible SBIR

