
POOL/CORAL POOL/CORAL
Status and PlansStatus and Plans

GiacomoGiacomo GoviGovi
CERN ITCERN IT

On behalf of POOL projectOn behalf of POOL project

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 22

POOL Domains

Oracle

SQLite

MySQL

XML

ROOT I/O

RDBMSSTORAGE MGR

FILE CATALOG

COLLECTION

P
O

O
L

A
P

I

U
S

E
R

 C
O

D
E

POOL PACKAGES BACKENDS

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 33

Data categories & storage backends

• ROOT I/O based backend targeted for complex data
structure
– event data
– analysis data

• XML used for simple data structure in local computing
environment
– catalogue data

• RDBMS more natural choice for non-event data
– conditions, calibration, alignment, detector description
– possibly produced by online systems
– frequently involved in selection queries

• POOL provides two levels of RDBMS access (C++)
– API for general data accessing and manipulating ->CORAL
– Interface to handle storage of C++ objects -> ORA

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 44

CORALCORAL

COmmon Relational Abstraction Layer
– a C++, SQL-free, technology-independent API for accessing

and manipulating RDBMS schemata and data

Usage of RAL extended beyond the scope of
POOL
– COOL: ‘internal’ client released separately
– ATLAS: direct access of relational data

Package (and release) the libraries
independently of the rest of POOL components

With new features addressing deployment and
distribution of relational data:
– service indirection, secure authentication mechanisms, client-

side monitoring, client-side connection pooling, etc.)

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 55

CORAL design conceptsCORAL design concepts

• Technology insulation achieved with abstract
interfaces

- with a minimal, complete set of functionality
- client components only depends on them

• (New) AttributeList interface used for the description
and the handling of the relational data

- only C++ (no SQL) types exposed
- type converters responsible for default and user-defined
type conversion

• SQL Fragments left only in the WHERE clauses of
queries and DML

- variable binding allowed (and recommended!)

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 66

SQLSQL--free accessfree access

Creating a table
MYSQL
CREATE TABLE T_t
(I BIGINT, X DOUBLE PRECISION)
ORACLE
CREATE TABLE “T_t”
(I NUMBER(20), X BINARY_DOUBLE)
CORAL (C++)
ISchema& schema =

session.nominalSchema();
TableDescription tableDescription;
tableDescription.setName(“T_t”);
tableDescription.insertColumn(“I”, “long long”);
tableDescription.insertColumn(“X”, “double”);
schema.createTable(tableDescription);

Issuing a query
MYSQL
SELECT X FROM T_t ORDER BY I LIMIT 5
ORACLE
SELECT * FROM
(SELECT X FROM “T_t” ORDER BY I)

WHERE ROWNUM < 6
CORAL (C++)
ITable& table = schema.tableHandle(“T_t”);
IQuery* query = table.newQuery();
query->addToOutputList(“X”);
query->addToOrderList(“I”);
query->limitReturnedRows(5);
ICursor& cursor = query->execute();

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 77

RDBMS manipulation

• Schema definition and manipulation
– Creation and manipulation of tables and views, indices, keys

(single and multi columns), constraints
– Describe existing schema elements

• Data manipulation
– Insert, modify and delete rows
– Support of I/O for LOBs

• Queries
– Involving one or more tables
– Row ordering, limiting
– Sub queries

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 88

Highlights of the CORAL API

• Bulk operations
round-trips to the server are minimized in insert/update/delete

operations.

• Using bind variables
SQL parsing on the server is avoided.

• Client-side caching of query results (row pre-fetching)
round-trips to the server are minimized when fetching the result

set of a query

• Support for BLOB I/O.
• Optimizations and “best practices” implemented in

the RDBMS plugins
users may concentrate on the functionality of their own use

cases.

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 99

DB connection

Uniform connection protocol
• Explicit contact string specifying technology and protocol:
• No authentication parameters
• Logical database service name: a lookup service provides the

corresponding contact string
• An internal service selects transparently the plugin to use

Client-side connection pooling
Authentication
• Explicit, specifying user name and passwords
• Implicit, via a dedicate service
• Integration of authentication based on Grid certificates may

follow

--see talk by see talk by Kuba Zajaczkowski

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1010

Monitoring

Client-side monitoring
– Flexible verbosity level
– General interface for monitoring service to register

information about interesting events:
• begin-end of sessions
• transactions
• response time

• …

– Collected data can be pushed into any monitoring
system by implementing the interface

– A default implementation is provided as a simple
data place holder

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1111

CORAL componentsCORAL components

Client
Software

User-level Interfaces
(abstract C++ classes)

CORAL data types and buffers
(Blob, AttributeList)

Developer-level Interfaces
(abstract C++ classes and default implementations)

RDBMS Impl.
(SQLite)

RDBMS Impl.
(MySQL)

RDBMS Impl.
(Oracle)

Authentication Service Impl.
(Environment)

Authentication Service Impl.
(XML)

Lookup Service Impl.
(XML)

shared libraries loaded at run-time by the SEAL plugin manager

Connection Service Impl.

Relational Service Impl.

Monitoring Service Impl.

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1212

Give me a session handle
for /my/logical/database

ConnectionService

This is a logical connection string.
I have to load and ask an

ILookupService implementation
IConnectionService

XMLLookupService

ILookupService

I have to look it up
in my XML fileTry the following connection

strings with this order:
oracle://oradb/oraschema

mysql://myhost/mydb
sqlite_file:///dbfile.db

Give me a valid connection
string for /my/logical/database

Opening a db session (I)Opening a db session (I)

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1313

Opening a db session (II)Opening a db session (II)

Give me an
IRelationalDomain for

oracle://oradb/oraschema

ConnectionService

RelationalService

Is there any plugin labeled
CORAL/RelationalPlugins/oracle

?
IRelationalService

Here you are!

IRelationalDomain
OracleAccess

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1414

Opening a db session (III)Opening a db session (III)

ConnectionService

Connect to oracle:://oradb/oraschema,
authenticate, start the monitoring and give me a

valid session handle
IRelationalDomain

OracleAccess

I have managed to connect,
but now I need the

authentication credentials

What is the user name and
password for

oracle:://oradb/oraschema ?

IAuthenticationService
I have to look it up

in my XML file

Try user1 and passwd1 XMLAuthenticationService

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1515

Opening a db session (IV)Opening a db session (IV)

OracleAccess

Record the start time of this
session!

IMonitoringService

MonitoringService

ISession

IRelationalDomain Here is a valid session
handle!

ConnectionService

Here is your session
handle!

IRelationalDomain

Great! I do not need to
try another replica!

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1616

POOL Object Relational AccessPOOL Object Relational Access

Implementation of the general POOL Storage
Manager interface for C++ objects
persistency

Write and Read complex data structures into/from
relational DBs

- wide acceptance of C++ constructs (seal Reflex)
- selecting the DB technology according to the

requirements
Retrieve existing relational data as C++ objects in the

offline reconstruction/analysis framework
- import in the off-line chain condition data taken on-line

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1717

RAL

ObjectRelationalAccess

RelationalStorageSvc

POOL::StorageService

OracleAccess SQLiteAccess MySQLAccess ODBCAccess

POOL relational layerPOOL relational layer

SEAL REFLEX

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1818

POOL persistency conceptsPOOL persistency concepts

•• A POOL A POOL ““objectobject””::
– Mapping version
– Value(s) of indexed parameter(s)

•• A POOL A POOL ““containercontainer””
– A table holding the values of the “object” structure

•• A POOL A POOL ““databasedatabase””
– Oracle user schema
– MySQL database
– SQLite file

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 1919

Object storing objects into RDBMSObject storing objects into RDBMS

• How to map classes ↔ tables ?
– C++ and SQL describe data layout with very different

constraints/aims
• Objects need an unique identifier (persistent

address)
– allows fast navigation
– requires unique index for addressable objects
– part of mapping definition

• Vectors can be stored
– Currently with the elements in individual records
– BLOB-based storage coming soon

• Mapping has to be stored with the object data
– more mapping versions may be needed

• Natural support of schema evolution
– Adapting the reading of previously written data through a

proper user-defined mapping

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2020

Mapping exampleMapping example

class A {class A {

intint x;x;

float y;float y;

std::vectorstd::vector<double> v;<double> v;

class B {class B {

intint i;i;

std::stringstd::string s;s;

} b;} b;

};};

…………………………

““HiHi””332.22.2222222

““HelloHello””331.41.4101011

B_SB_SB_IB_IYYXXIDID

0.30.32222

32.132.11122

12.212.22211

0.120.12111 1

VVPOPOIDID

T_A

T_A_V

f.k. constraint

This is only one of the possible mappings!

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2121

Mapping elementsMapping elements

• A mapping :
– Version
– Hierarchical tree of mapping elements

• An element:
– Element type (“Object”, “Primitive”, “Array”, “POOL

reference”, “Pointer”)
– Associated table name
– Associated variable name
– Associated variable type
– Associated columns
– Associated mapping elements

• Everything is stored in 3 relational tables

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2222

Mapping generationMapping generation

• Prerequisites :
– C++ class(es) already defined
– The SEAL dictionary libraries already generated

• A tool is provided for the user-driven mapping
generation:
– XML input file to

• Select the C++ classes
• Override default mapping rules
• Define the mapping version

– Mapping gets “materialized” and stored in the
database

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2323

Guided object storageGuided object storage

• Object I/O via the ObjectRelationalPersistency
interface
– For every object I/O operation the client has to supply:

• the corresponding SEAL dictionary for the object's class
• the object/relational mapping
• the “persistent address” (eg. the value of the primary key

in the table corresponding to the object's class)
– Object data stored/retrieved following the SEAL dictionary

information, and finding the corresponding entries in the
mapping

• Many schema evolution cases can be treated
transparently through this mechanism

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2424

Reading existing data as C++ objectsReading existing data as C++ objects

ORA can read relational data as C++ objects, even if
tables and rows are generated by other means

Prerequisites:
• Classes describing the object layout are defined with a proper mapping
• Rows storing objects data are uniquely identified by primary keys
Command-line tool available
• Set up the POOL database according to the directives specified by the

user (technology, containers, mapping)
• ‘Soft’ import: configure and update POOL internals to populate pool

containers
• Original data is unchanged!
• ‘Dry run’ option
IOV and payload data can be treated as associated objects

Issues:
- updates from the online side could be asynchronous.
An automatic mechanism to trigger the update on the POOL side has to
be studied.

- deletion of rows potentially breaks references

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2525

SummarySummary

POOL framework provides transparent access to POOL framework provides transparent access to
RDBMS based persistencyRDBMS based persistency

•• CORAL API for general data manipulationCORAL API for general data manipulation
•• Object Relational Storage manager for storage and retrieve of Object Relational Storage manager for storage and retrieve of

data as C++ objectsdata as C++ objects

Strong focus on features addressing deployment issuesStrong focus on features addressing deployment issues
•• Connection with indirection to support multiConnection with indirection to support multi--replica across replica across

technologies technologies
•• Transparent authenticationTransparent authentication
•• ClientClient--side connection poolingside connection pooling
•• Interface for clientInterface for client--side monitoringside monitoring
•• Use and promote best practices in the DB client codeUse and promote best practices in the DB client code

Concrete use case of C++ objects I/O into RDBMSConcrete use case of C++ objects I/O into RDBMS
•• Including the capability to read existing dataIncluding the capability to read existing data

LCG Database Deployment and Persistency WorkshopLCG Database Deployment and Persistency Workshop 2626

CORAL backend CORAL backend pluginsplugins

•• OracleOracle
-- Based on OCI Based on OCI

-- CORAL interface fully supported nativelyCORAL interface fully supported natively
-- Linux platforms (Win32 will follow)Linux platforms (Win32 will follow)

•• SQLiteSQLite
-- a lighta light--weight embeddable SQL database engineweight embeddable SQL database engine

-- file based (zero configuration, administration)file based (zero configuration, administration)
-- Linux and Win32 Linux and Win32 platfromsplatfroms

•• MySQLMySQL
-- available implementation based on available implementation based on MyODBCMyODBC driverdriver
-- implementation based on the native implementation based on the native MySQLMySQL driver coming driver coming
soonsoon……

