

Scalable Storage Configuration for the Physics Database Services

Luca Canali, CERN IT

LCG Database Deployment and

Persistency Workshop

October, 2005

Outline

- In this talk I will discuss
 - Storage configuration for scalable database services
 - Main challenges
 - Best practices
 - An implementation of scalable storage
 - Impacts on DB logical to physical mapping
 - Performance and resource allocations
 - How we can help you to size new database projects or to scale up existing applications
 - Performance testing
 - Benchmark data

Oracle Scalable Architecture

Goal: A database infrastructure that provides the required system resources to the end-users and applications.

How: A modular architecture that can scale up to a large number of components

RAID 1: HA Storage

Mirroring

- 2-Way mirroring (RAID 1) protects against single point of failures
- Can be used to redistribute I/O load (performance)

RAID 0: Scalable Performances

- RAID 0 (Striping) automatically redistributes files across multiple disks.
- Performance and scalability are increased
- Error resiliency is decreased

Unstriped Disks

Striped Disks

Mechanical and Geometrical constraints

- The external part of the disk provides
 - More throughput
 - Less latency

S.A.M.E Strategy

- Goal: optimize storage I/O utilization
- S.A.M.E. (Stripe And Mirror Everything) Strategy
 - Built on the concepts of RAID 1 + 0
 - Proposed by J. Loaiza (Oracle) in 1999
 - Replaces "old recipes": manual balancing across volumes
- Need a Software or Hardware Volume Manager
 - ASM is Oracle's solution with 10g "S.A.M.E. out of the box"
 - Other solutions available from different vendors require configuration

Storage Configuration Guidelines

- Use all available disk drives
- Place frequently used data at outer half of disk
 - Fastest transfer rate
 - Minimize seek time
- Stripe data at 1MB extents
 - Distribute the workload across disks
 - Eliminate hot spots
 - Optimum sequential bandwidth gained with 1MB I/O
- Stripe redo logs across multiple drives
 - Maximize write throughput for small writes
 - Smaller stripe size (128KB) and/or dedicated disks
- Use cache on the controller
 - Write-back' cache
 - Battery-backed cache

Oracle's ASM Main Features

- Mirror protection:
 - 2-way and 3-way mirroring available.
 - Mirror on a per-file basis
 - Can mirror across storage arrays
- Data striping across the volume:
 - 1MB and 128KB stripes available
- Supports clustering and single instance
- Dynamic data distribution
 - A solution to avoid 'hot spots'
 - On-line add/drop disk with minimal data relocation
 - Automatic database file management
- Database File System with performance of RAW I/O

ASM's Configuration – Examples

 ASM is a volume manager, its output are disk groups (DG) that Oracle databases can mount to allocate their files

DATA-DG

RECOVERY-DG

Config 1: Disk groups created with dedicated disks

Config 2: Disk groups created by 'horizontal' slicing

Proposed Storage Configuration

- Proposed storage configuration:
 - High availability
- Allows backups to disk
- High performance
 Allows clusterware mirroring (10.2)
- DBs have dedicated resources

FAQ 1: Datafiles

- Do I need to worry on the number and names of the datafiles allocated for each tablespace?
- "Traditional" storage allocation across multiple volumes:
 - Requires a careful allocation of multiple datafiles across logical volumes and/or filesystems
 - Datafile-to-filesystem and filesystem-to-physical storage mappings have to be frequently tuned
- S.A.M.E. storage, such as Oracle ASM, provides balanced I/O access across disks
 - There is NO NEED, for performance reasons, to allocate multiple datafiles per tablespace.
 - 10g new feature "bigfile tablespace" allows for tablespaces with a single datafile that can grow up to 32 TB (db_block_size=8k)

FAQ 2: Data and Index Tablespaces

- Do I need dedicated tablespaces for indexes and tables?
- Separation of indexes and tables has often been advised to:
 - Distribute I/O
 - Reduce fragmentation
 - Allow separate backup of tables and indexes
- S.A.M.E. storage, such as Oracle ASM, provides balanced I/O access across disks
 - No performance gains are expected by using dedicated tablespaces for INDEXes and TABLEs.
- Additional Notes:
 - Tablespaces fragmentation has little impact when using locally managed
 TBSs and automatic segment space management (9i and 10g)
 - Very large database can profit from using multiple tablespaces for admin purposes and logical separation of objects

FAQ 3: Sizing Storage

- Storage sizing for database should not take size as the first requirement
 - Bandwidth and performance metrics are bound to the number of disk spindles
 - Magnetic HD technology has improved the GByte/\$ ratio
 - The rest of HD technology has not seen much improvements in the last 5 years (since 15K rpms HDs)
- Sizing for storage requirements should
 - Be based on stress test measurements
 - Past performance measurements on comparable systems
 - New projects can leverage benchmark data.
- Extra HD space is not wasted
 - Can be used to strengthen the B&R policy with Disk Backups

10 Benchmark Measurements

Benchmark data can be used for

- Sizing of new projects and upgrades
- Performance baseline, testing for new hardware

The following metrics have been measured:

- Sequential throughput (full scans)
- Random access (indexed access)
- I/O per second (indexed access)
- Metrics are measured as a function of workload

Other test details

- Benchmark tool: Oracle's ORION
- Infortrend Storage array: 16 SATA x 400 GB disks, 1 controller and 1 GB cache

IO Benchmark Data

IO Benchmark Data

IO Benchmark Data

Conclusions

- The Database Services for Physics can provide
 - Scalable Database services
 - Scalable on CPU and Memory resources
 - Scalable on Storage resources
 - Sizing for new projects or upgrades
 - Stress/Performance testing
 - Integration and Validation Testing
 - Benchmark data for capacity planning

Additional Benchmark Data

Additional Benchmark Data

Additional Benchmark Data

