
Database Availability
Impact on Applications and Higher Level

Services

Dirk Duellmann, CERN IT

LCG Database Deployment &
Persistency Workshop

Database Deployment &
Persistency Workshop

Dirk Duellmann 2

High Availability

• Many grid and experiment service need to be available almost all the
time, because
– Unavailability makes computing resources unusable
– Recovery after service failure is costly

• Many services use a database as back-end to implement their service
function
– Availability expectations result in database availability requirements but

numbers on different layers are not the same!

• Example:
– If a service failure of 2 minutes results in 10k grid jobs of 8h length to

abort then the loss of “grid computing time” is 4 hours (average)
– Same is true between application and database availability

Database Deployment &
Persistency Workshop

Dirk Duellmann 3

How to increase availability?

• We could use only perfect hardware and software
– We haven’t tried that yet :-)

• In the real world: Retry, Redundancy and Failover
– Multiple components to implementing the same task/service

• Eg multiple nodes in a RAC cluster, multiple mirrored disks, multiple network paths,
– Retry failed operations (for a while…)
– Failover to an alternate service (and back after recovery)

• Effort spent should scale with risk of unavailability
– Risk = Probability of failure * Damage caused

• Applies to all layers in the system
– h/w, network, db, higher level services, apps

Database Deployment &
Persistency Workshop

Dirk Duellmann 4

Database Unavailability - Main Causes

• Planned interventions
– Security patches - OS and Database s/w

• Affect all boxes
• Time constraint in some cases immediate -> quasi an unplanned intervention

– “Normal” Software upgrades
• As before but less time constraints

– Hardware extension / replacement

• Unplanned interventions
– Software failures including database overload

• Cluster becomes unstable (eg because of timeouts)
– Hardware failures

• CPU/memory/etc, double disk failure
– Human error

Database Deployment &
Persistency Workshop

Dirk Duellmann 5

Planned Interventions - Status Today

• Increasing number of interventions can be done transparently
– Thanks to new RAC and FibreChannel setup

• Many Oracle patches (including security ones) still require to bring down
all cluster nodes
– Oracle is aware of the problem and promises “rolling upgrade”
– Db services - try to minimise the intervention time by

• automising and testing patches (eg in the validation setup)
• failing over to a DataGuard setup would be a possibility - but significant effort

• Can not expect to remove a service outages completely:
– few minutes (failover to data guard and back to production)
– Some 30 mins (prepared non-rolling upgrade)

Database Deployment &
Persistency Workshop

Dirk Duellmann 6

Instabilities caused by Overload -
Status Today

• Databases don’t like overload
– neither single servers nor database clusters can go beyond 100% CPU used

• Oracle cluster software detects node failures will issue node restart
– Based on heartbeats / timeouts - works well outside overload conditions

• Need to leave sufficient (h/w) headroom to stay away from overload area
– But Experiments/Grid s/w often do not control the database load caused by application

running somewhere in the grid
– But “culture” on physics side is: use all computing resources you can get

• Need to determine and agree on “standard” working conditions for key apps
during the validation phase

– length of sessions, number of sessions, max CPU use per application

• Introduce database “throttling” to avoid overload conditions
– Normally: Queue db requests based on priorities (eg per application)
– Exceptionally: Kill sessions which risk to destabilize the service affecting others

Database Deployment &
Persistency Workshop

Dirk Duellmann 7

Impact on “Normal” Applications

• Limiting the damage - avoiding the “black hole” syndrome
– Apps need to retry and wait at least on database connection attempt

• This should allow to avoid draining grid or local job queues
– CORAL release will include this functionality for LCG AA software

• Based on experience with ATLAS connection library
• Failover if possible (eg read-only apps)

– Logical database lookup (eg via CORAL)
• Connect string is determined at runtime based on job location, replica

locations and service availability
• Avoids hard-coding of connection information we have today

– Allows client to failover to other replicas or locally cached data

• Will have to accept that a few jobs will abort

Database Deployment &
Persistency Workshop

Dirk Duellmann 8

Impact on Higher Level Services

• Central services - classified by risk
– Grid services : Jamie’s with availability targets
– Experiment services: required by many grid jobs?

• Need to check if expected outages pose a problem to achieve their required
availability

– Developers & DBAs should validate if code handling of outages is working as expected
• Does code re-issue failed queries? React connection failures? service failover?

– Services often appear as a single user to the database
• End-to-end logging is required to determine source of excessive use

• Need to schedule validation in time to avoid surprises during production
– Use the validation service (either CERN T0 or 3D testbed)
– Test plans should include schedule for these tests

Database Deployment &
Persistency Workshop

Dirk Duellmann 9

Summary

• New RAC based service will provides much higher service
availability than single box setups in the past
– Adding DataGuard could increase availability further but would

require significant additional effort
– 100% availability not achievable

• Applications and services need implement connection retry and
failover to take advantage of service redundancy and gracefully
handle remaining short unavailability
– POOL/CORAL implements this for user applications
– Single job loss can not always be avoided.
– Grid services may need more work to achieve their availability

targets

Database Deployment &
Persistency Workshop

Dirk Duellmann 10

Conclusions

• Security patches - will happen at least 4 times a year
– Few minutes to one hour until DB rolling upgrades become reality

• Overload conditions - happen with similar frequency and duration today
– Separate experiment/grid RACs and additional resources and flexibility will

help
– New applications / code changes / access pattern will make it worse
– Database throttling based on results from validation is required to lower this

risk
– Service throttling and end-to-end monitoring in high level grid and

experiment services will be essential to avoid/react on db overload

• Expected database outages need to be taken into account by the
deployment plans of db users
– Critical applications and services need validation!

