LCG Database Deployment &
Persistency Workshop

Database Availability
Impact on Applications and Higher Level

Services

Dirk Duellmann, CERN IT




High Availability

Many grid and experiment service need to be available a/most all the
time, because

- Unavailability makes computing resources unusable

- Recovery after service failure is costly

Many services use a database as back-end to implement their service
function

- Availability expectations result in database availability requirements but
numbers on different layers are not the same!

Example:

- If aservice failure of 2 minutes results in 10k grid jobs of 8h length to
abort then the loss of "grid computing time" is 4 hours (average)

- Same is true between application and database availability

Database Deployment & Dirk Duellmann
Persistency Workshop




How to increase availability?

We could use only perfect hardware and software
- We haven't tried that yet :-)
In the real world: Refry, Redundancy and Failover

- Multiple components to implementing the same task/service
+ Eg multiple nodes in a RAC cluster, multiple mirrored disks, multiple network paths,
- Retry failed operations (for a while...)

- Failover to an alternate service (and back after recovery)

Effort spent should scale with risk of unavailability

Applies to all layers in the system

, higher level services, apps

Database Deployment & Dirk Duellmann
Persistency Workshop




Database Unavailability - Main Causes

Security patches - OS and Database s/w

Affect all boxes
Time constraint in some cases immediate -> quasi an unplanned intervention

“Normal” Software upgrades
As before but less time constraints
Hardware extension / replacement

Software failures including database overload
Cluster becomes unstable (eg because of timeouts)
Hardware failures

CPU/memory/etc, double disk failure
Human error

Database Deployment & Dirk Duellmann
Persistency Workshop




Planned Interventions - Status Today

- Thanks to new RAC and FibreChannel setup

Many Oracle patches (including security ones) still require to bring down
all cluster nodes

- Oracle is aware of the problem and promises "rolling upgrade”

- Db services - try to minimise the intervention time by

- automising and testing patches (eg in the validation setup)
» failing over to a DataGuard setup would be a possibility - but significant effort

Can not expect to remove a service outages completely:

- few minutes (failover to data guard and back to production)
- Some 30 mins (prepared non-rolling upgrade)

Database Deployment & Dirk Duellmann
Persistency Workshop




Instabilities caused by Overload -
Status Today

Databases don't like overload

- neither single servers nor database clusters can go beyond 100% CPU used
Oracle cluster software detects node failures will issue node restart

- Based on heartbeats / timeouts - works well outside overload conditions
Need to leave sufficient (h/w) headroom to stay away from overload area

- But Experiments/Grid s/w often do not control the database load caused by application
running somewhere in the grid

- But "culture” on physics side is: use all computing resources you can get

Need to determine and agree on “standard” working conditions for key apps
during the validation phase

- length of sessions, humber of sessions, max CPU use per application
Introduce database "throttling” to avoid overload conditions

: Queue db requests based on priorities (eg per application)
: Kill sessions which risk to destabilize the service affecting others

Database Deployment & Dirk Duellmann
Persistency Workshop




Impact on "Normal® Applications

Limiting the damage - avoiding the "black hole" syndrome

- Apps need to retry and wait at least on database connection attempt

* This should allow to avoid draining grid or local job queues
- CORAL release will include this functionality for LCG AA software

- Based on experience with ATLAS connection library
Failover if possible (eg read-only apps)
- Logical database lookup (eg via CORAL)

- Connect string is determined at runtime based on job location, replica
locations and service availability

* Avoids hard-coding of connection information we have today
- Allows client to failover to other replicas or locally cached data

Will have to accept that a few jobs will abort

Database Deployment & Dirk Duellmann
Persistency Workshop




Impact on Higher Level Services

- 6rid services : Jamie's with availability targets

- Experiment services: required by many grid jobs?
Need to check if expected outages pose a problem to achieve their required
availability

- Developers & DBAs should validate if code handling of outages is working as expected
Does code re-issue failed queries? React connection failures? service failover?

- Services often appear as a single user to the database
End-to-end logging is required to determine source of excessive use

Need to schedule validation in time to avoid surprises during production
- Use the validation service (either CERN TO or 3D testbed)
- Test plans should include schedule for these tests

Database Deployment & Dirk Duellmann
Persistency Workshop




Summary

- Adding DataGuard could increase availability further but would
require significant additional effort

Applications and services need implement connection retry and
failover to take advantage of service redundancy and gracefully
handle remaining short unavailability

- Single job loss can not always be avoided.

Database Deployment & Dirk Duellmann
Persistency Workshop




Conclusions

- will happen at least 4 times a year
Few minutes to one hour until DB rolling upgrades become reality

- happen with similar frequency and duration today

Database throttling based on results from validation is required to lower this
risk

Service throttling and end-to-end monitoring in high level grid and
experiment services will be essential o avoid/react on db overload

Expected database outages need to be taken into account by the
deployment plans of db users

Database Deployment & Dirk Duellmann
Persistency Workshop




