

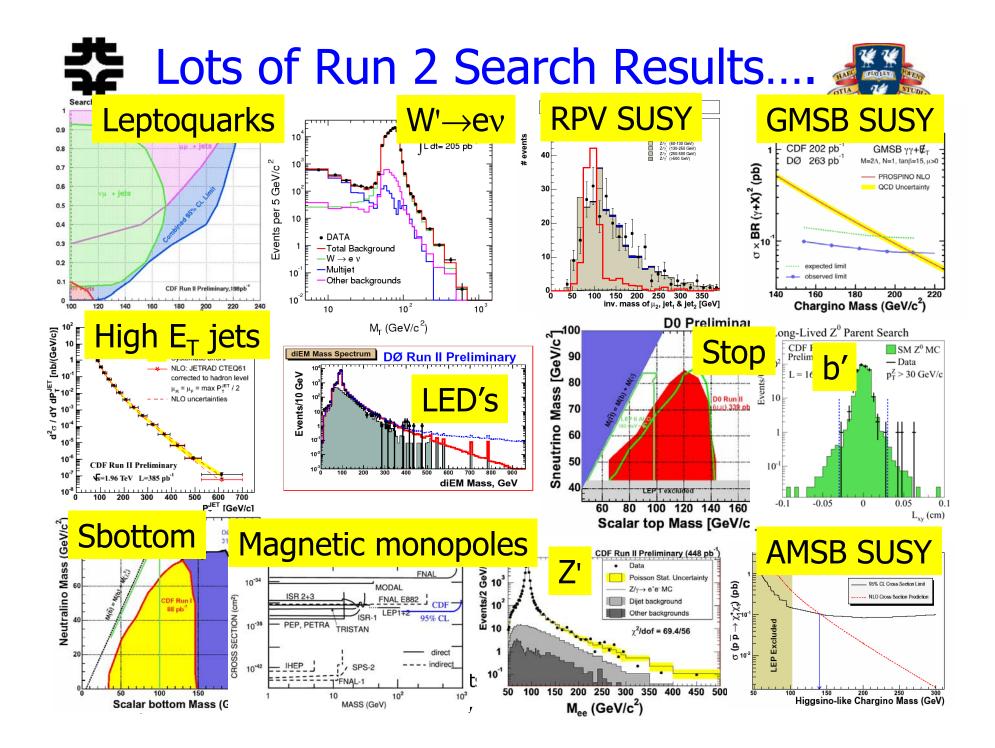
Tracey Berry University of Liverpool

Tracey Berry 21st September, 2005 Recent Results from the Tevatron IOP HEPP, Imperial College

1

Motivation for Searches

The Standard Model (SM) leaves many open questions ...


- What is the origin of mass?
- Are there <u>3 generations</u>? And if so, why?
- Why is there such a large mass hierarchy?
 - Within fermion sector
 - Between EWK and Planck scale
- What is cold dark matter?
- Is there a common single force?
- Are the fermions and bosons point-like? Or do they have substructure?

...and there are many models to address these!

- Supersymmetry
 - mŚUGRA, GMSB, AMSB, R-parity violated or not,...
- Extended gauge theories
- Little Higgs
- Technicolor, topcolor
- Compositeness: excited fermions
- Extra dimensions (ADD, Randall-Sundrum, TeV-1)

Most predict new particles to be discovered Or deviations to SM σ s/observables to be detected

Tracey Berry 21st September, 2005

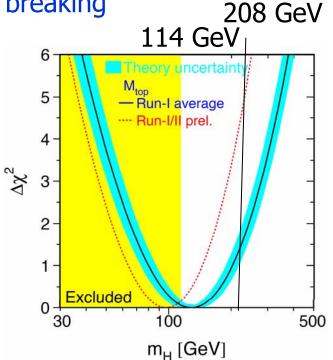
to highlight the variety searches/signatures/methods used

- Standard Model Higgs Boson
- SUSY:
 - Higgs Bosons
 - Charginos/Neutralinos + Squarks/Gluinos
 - Rare Decays
 - ChaMPs
- Extra Dimensions
- Z' Bosons

Analyses use ~ 300-600 pb⁻¹ data taken from September 2004 to March 2005

Tracey Berry 21st September, 2005

Only Standard Model particle not see as yet: understanding of electroweak symmetry breaking

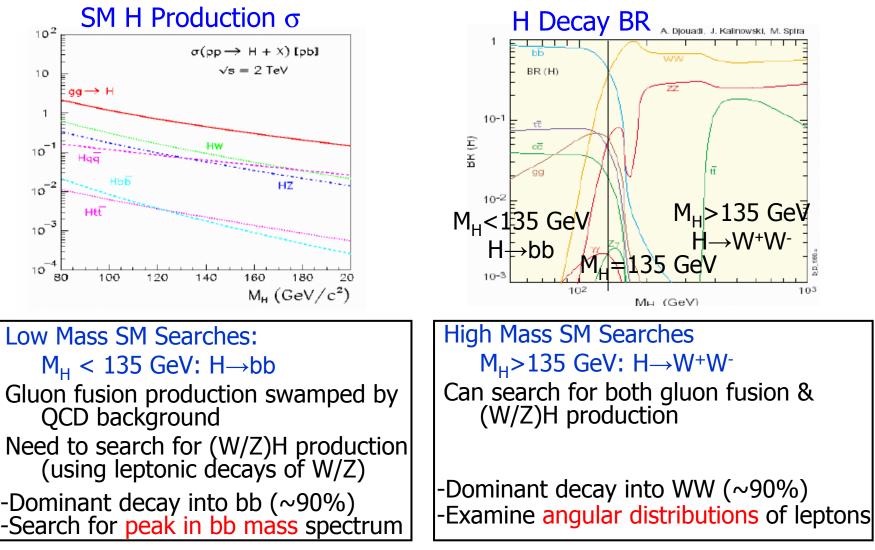

• Direct searches at LEP:

M_H>114 GeV (95% CL)

 Precision data prefer light SM Higgs precision EW fits:

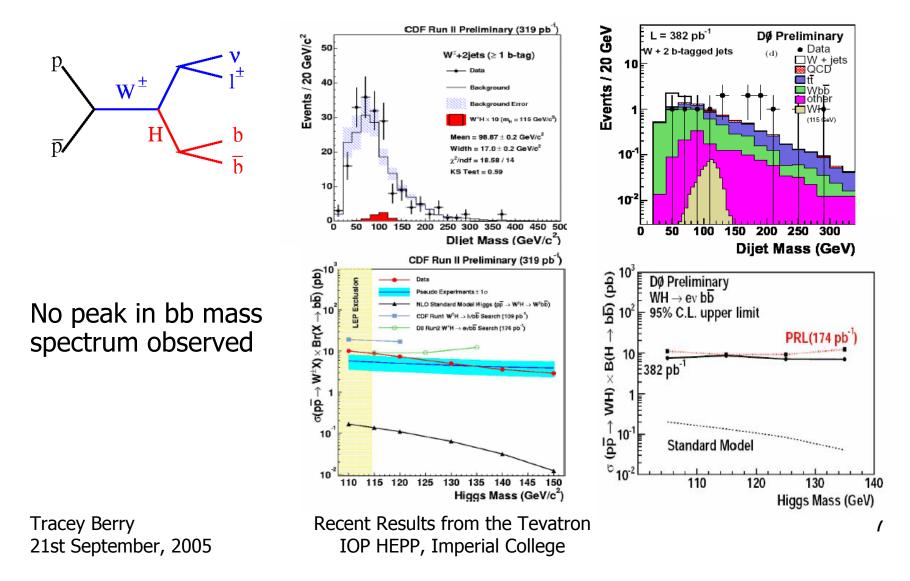
 $\rm M_{H}=98~GeV\rightarrow M_{H}{<}208~GeV~(95\%~CL)$

• SUSY (MSSM) requires $m_h < 136 \text{ GeV}/c^2$


Tevatron: both direct searches & (M_W, M_{top}) precision measurements

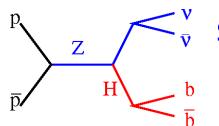
Tracey Berry 21st September, 2005

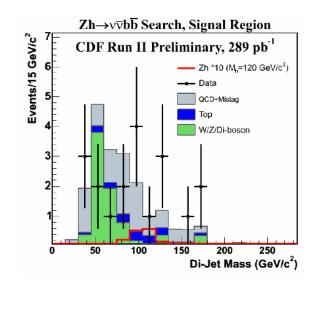
SM Higgs Searches

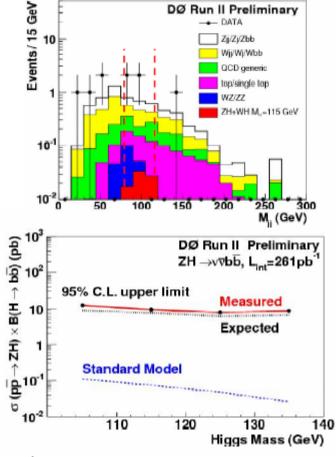


Tracey Berry 21st September, 2005

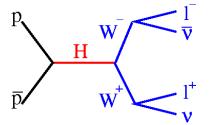
Low Mass: $WH \rightarrow (e/\mu)vbb$


CDF (319pb⁻¹) & D0 (382pb⁻¹) have performed 1 & 2 b-tag searches



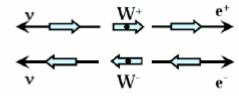

Low Mass: $ZH \rightarrow v\overline{v}bb$

Search for excess in the di-b-jet mass distribution

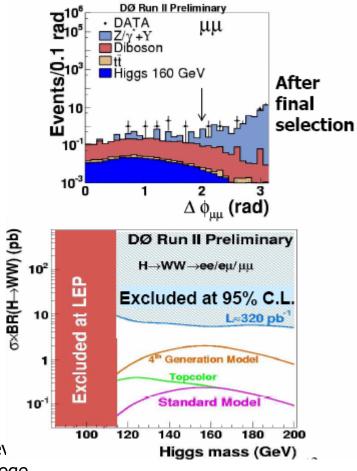


Tracey Berry 21st September, 2005

High Mass: gg→H→WW



High mass, m_H>135 GeV/c²: -Can search for both gluon fusion & (W/Z)H production -Dominant decay into WW (~90%) -Examine angular distributions of leptons


Search Selection D0 299-325 pb⁻¹ Dilepton data: ee, eµ, µµ with p_T >15/10 GeV Opposite charge Missing E_T>20 GeV

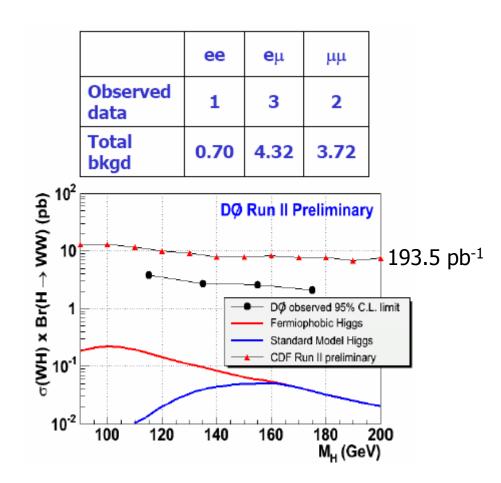
- Additional kinematic cuts (e.g., m^{II}, m_T^{II}, H_T, etc.)
- Exploit spin correlations in decay (leptons from H tend to point in the same direction)

 $- \Delta \phi_{II} < 2$

Tracey Berry 21st September, 2005

Search Selection

D0 384-363pb⁻¹

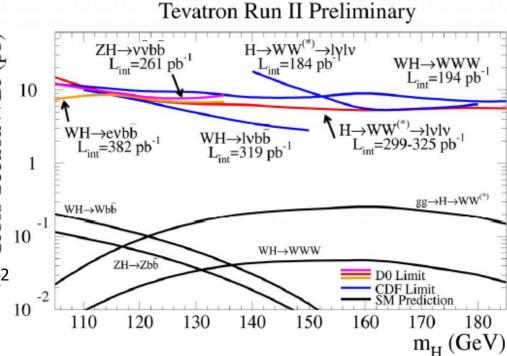

ee, eμ, μμ

-2 like-sign isolated leptons

- P_T >15 GeV, veto 3rd lepton

-Track quality cuts

-Missing E_T >20 GeV

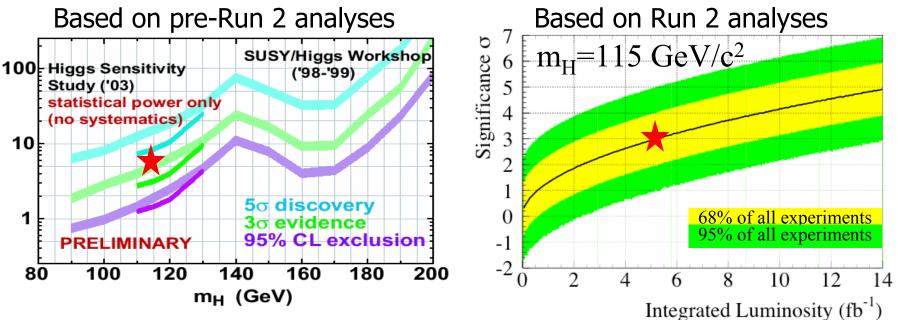

Tracey Berry 21st September, 2005 Recent Results from the Tevatron IOP HEPP, Imperial College

10

Current Higgs Search Summary

- Current results from DØ and CDF:
 - WH->lvbb
 - ZH->vvbb
 - WW->IIvv
 - WWW->I[±]I[±] + X
- SM predictions much lower than current analyses:
- Cross-Section × Br (pb) e.g Combination of current CDF analyses (L=300 pb⁻¹) gives upper limit 20 times larger than SM prediction at 115 GeV/ c^2

Can we close the gap?



- \succ Will gain factor $\sqrt{2}$ from combination of CDF and D0
- > Factor $\sqrt{(L/300 \text{ pb}^{-1})}$ with increasing luminosity
 - Factor 5 missing with L=2 fb⁻¹

Expect factor ~10 improvements in analyses and CDF+DØ combination: => Need 2.5 fb⁻¹ for 95% C.L. exclusion of 115 GeV Higgs

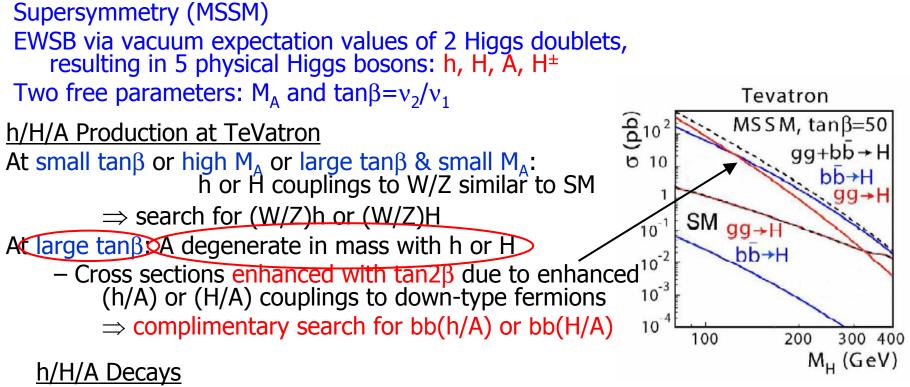
Tracey Berry 21st September, 2005

- Confirmed previous studies with Run 2 data experience
 - Syst. uncertainties increase required luminosity by 40%
- 95% C.L. exclusion:
 - \int Ldt =2-2.5 fb⁻¹: probe LEP excess at m_H=115 GeV/c²
 - \int Ldt =4.0 fb⁻¹: up to m_H=130 GeV/c²
 - \int Ldt =8.0 fb⁻¹: up to m_H=135 GeV/c²

• 3σ evidence:

− \int Ldt ≈5.0 fb⁻¹: for m_H=115 GeV/c²

Tracey Berry 21st September, 2005



- Addresses many questions and problems in SM:
 - Elegant solution to hierarchy problem ($m_W < < m_{Pl}$)
 - Achieves unification of gauge theories at GUT scale
 - Predicts a natural candidate for cold dark matter
 - if R-parity is conserved
- More than 100 parameters:
 - Rich phenomenology => many different signatures
- Experimental status:
 - No evidence found:
 - Stringent direct limits on sleptons and gauginos set by LEP: e.g. m(χ^{\pm})>103.5 GeV/c²
 - Consistent with measurements of $\Omega_{\text{DM}}h^2$, $(g\text{-}2)_{\!\mu}$, $b\!\to\!s\gamma$ and electroweak precision data

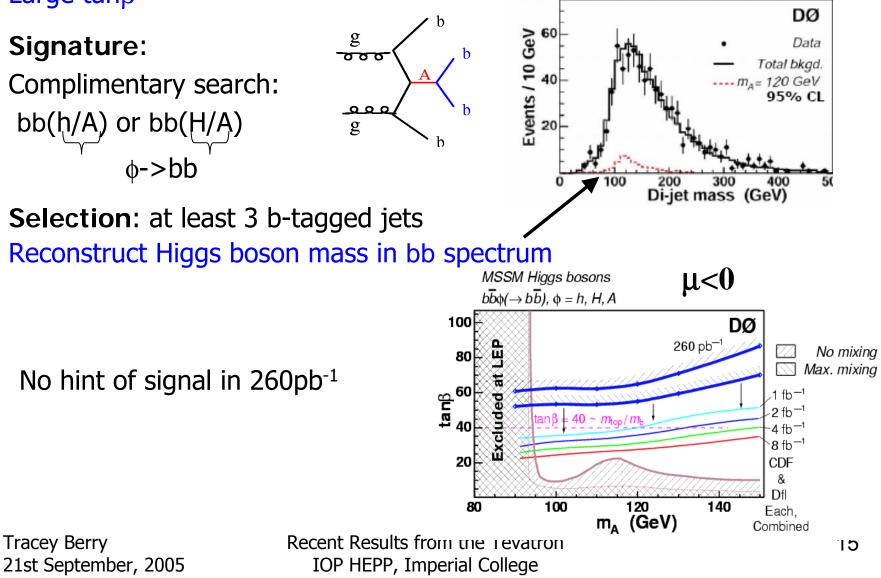
TH in Minimal Supersymmetric SM

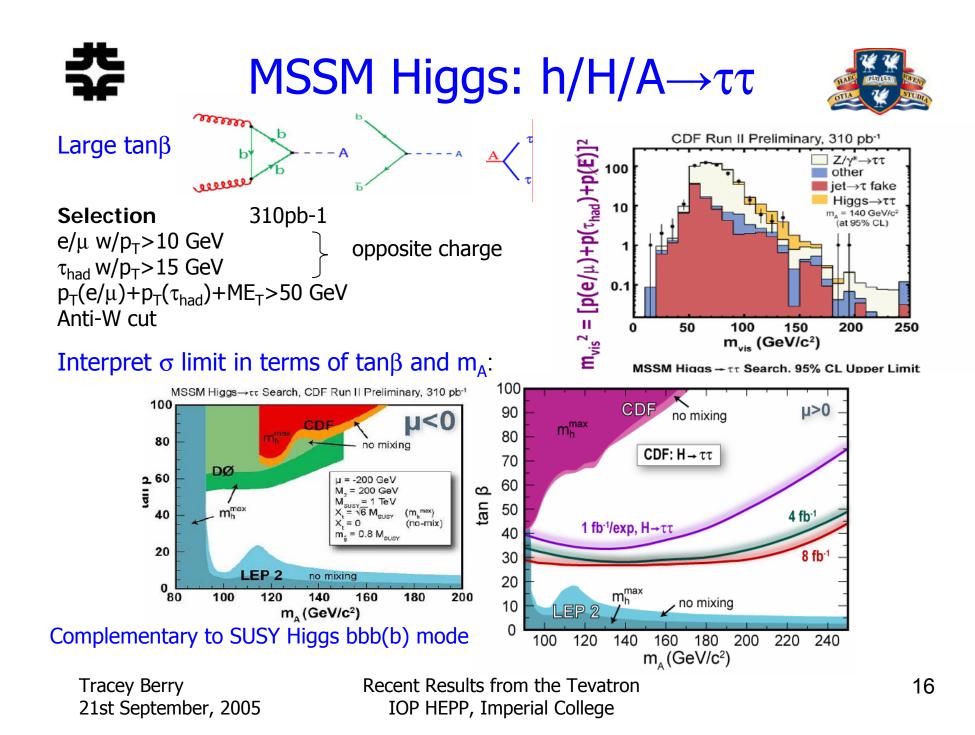
In most of parameter space:

 $h/H \rightarrow bb$ (90%)

 $\rightarrow \tau^+ \tau^- (10\%)$

 \rightarrow WW/ZZ suppressed, except for small tan β and M_H>160 GeV


Tracey Berry 21st September, 2005 $A \rightarrow bb (\sim 90\%)$ $\rightarrow \tau^+ \tau^-$ (~10%) Exact values depend on SUSY


In all parameter space:

parameter space

Large $tan\beta$

Other Higgs analyses.....

 $ZH{\rightarrow}I^{+}I^{-}bb$

Charged Higgs

H++, H—

Η→γγ

.

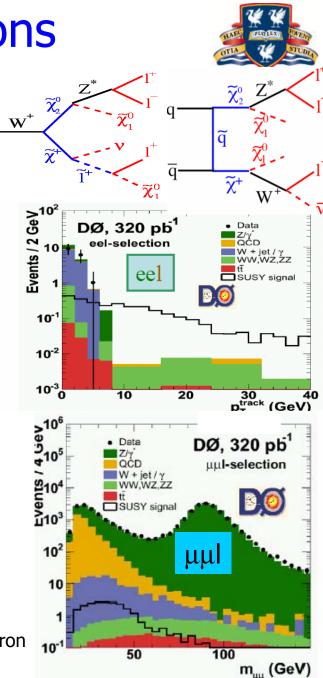
Tracey Berry 21st September, 2005

SUSY Trileptons "Golden" trilepton chargino-neutralino production

$$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \rightarrow l^{\pm}l^{\pm}l^{\pm}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}X$$

Low SM backgrounds

Signature


3 (low p_T) leptons + large ME_T DØ 320 pb⁻¹

Selection

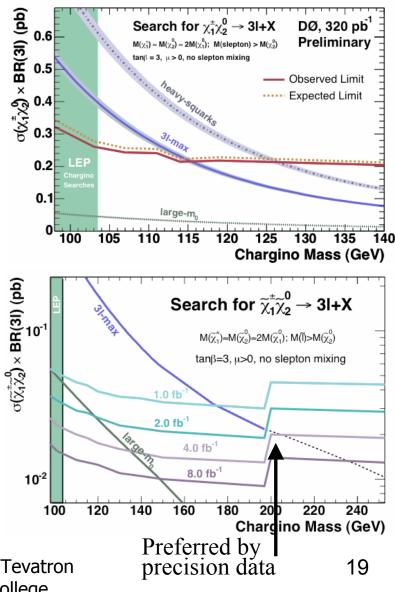
- 2 I (I=e, μ , τ) + isolated track or $\mu^{\pm}\mu^{\pm}$
- ME_T + topological cuts
- Analysis most sensitive at low $tan\beta$

Channel	Observed	SM expected			
e e + <i>l</i>	0	0.21±0.12			
e μ + <i>l</i>	0	0.31±0.13			
$\mu \mu + l$	2	1.75±0.57			
Same sign μ μ	1	0.66±0.37			
Sum	3	2.93±0.54±57			
$e \tau + l$	0	0.58±0.14			
μ τ + <i>l</i>	1	0.36±0.13			

Tracey Berry 21st September, 2005

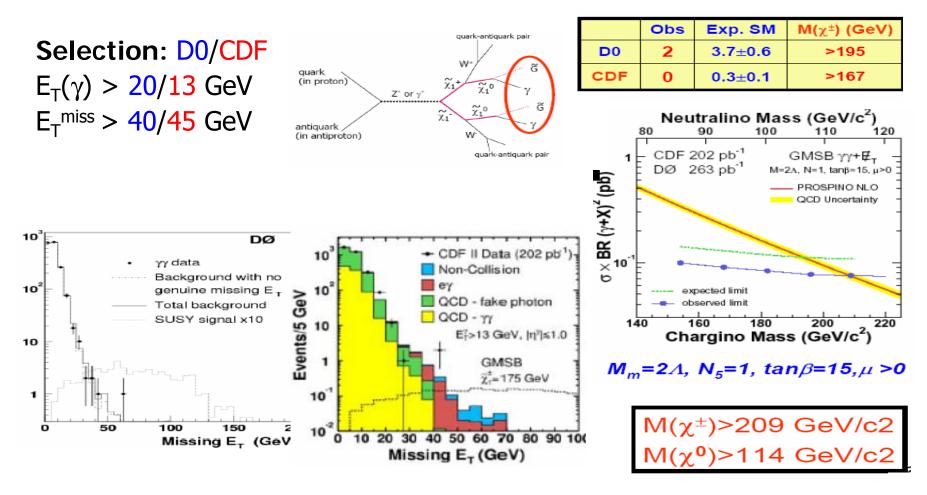
챢

Trilepton Limits


Results $\sigma xBR < 0.2-0.3 \text{ pb}$ $\Rightarrow 31\text{-max: low m0 - leptonic BR is}$ maximally enhanced for $M(\tilde{l}) \ge M(\tilde{\chi}_2^0)$ $M(\tilde{\chi}_1^{\pm}) > 117 \text{ GeV}$ $\Rightarrow \text{heavy-Squarks: } M(\tilde{q}) >> M(\tilde{l}) - \text{cross section is maximal}$ $M(\tilde{\chi}_1^{\pm}) > 132 \text{ GeV}$

Future

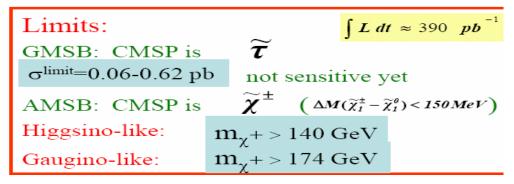
 \succ Including the $e\tau l \ \& \ \mu \tau l$ analyses gives better sensitivity

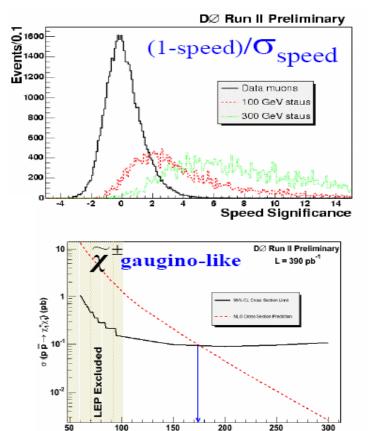

- Limit improved by 10% for tan β =3
- More expected at large $tan\beta,$ where $\tau 's$ dominate the final state
- Cross section limit 0.05-0.01 pb
- L=1 fb⁻¹: probe chargino masses up to 100-170 GeV/c²
- L=8 fb⁻¹: probe chargino masses up to 150-240 GeV/c²

Tracey Berry 21st September, 2005

GMSB Chargino & Neutralino in $\gamma\gamma$ + E_T^{miss}

D0 263 pb⁻¹ & CDF 202 pb⁻¹: Combination: hep-ex/0504004




Tracey Berry 21st September, 2005

Production of a pair of CMSP

("stable" $\widetilde{m{ au}}$ or χ^{\pm})

Charged Massive Particles with $c\tau > 10$ m Appear as slow moving high P_T µ Timing of the µ scintillators used speed significantly slower than c D0 390 pb⁻¹: 0 candidates observed 0.66 ± 0.6 event expected No SM background

Tracey Berry 21st September, 2005 Recent Results from the Tevatron IOP HEPP, Imperial College

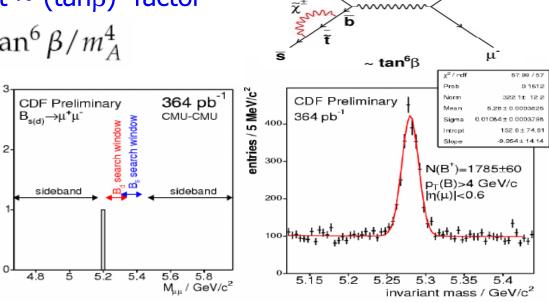
Chargino Mass (GeV)

Rare Decay: $B_S \rightarrow \mu^+ \mu^-$

MSSM

Hº/Aº

In SM, small BR ~ $3.5x \ 10^{-9}$ but in SUSY, enahancement ~ $(\tan\beta)^6$ factor


$$B(B_s \to \mu^+ \mu^-) \propto \tan^6 \beta / m_A^4$$

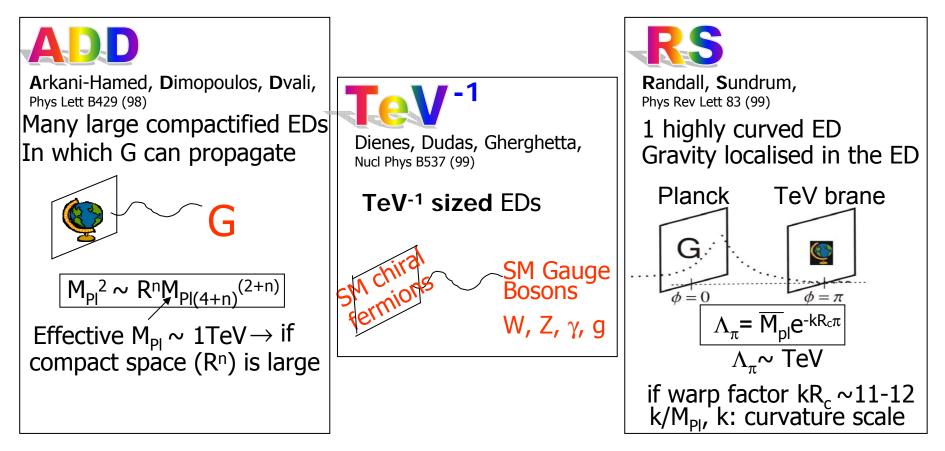
Selection

 $\mu^{+}\mu^{-}$ (P_T>2-3 GeV) from displaced vertex

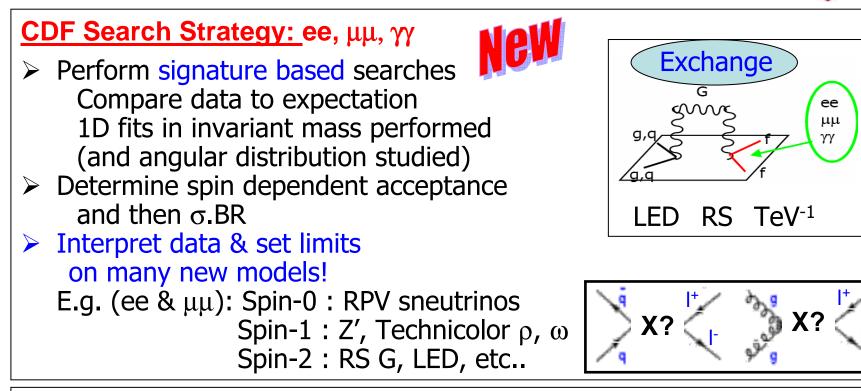
Count events inside a $M(\mu\mu)$ window (±100 MeV around the B_S mass)

 \rightarrow 0 event observed Normalize the upper limit B \pm \longrightarrow J/ Ψ K \pm events

at 90%C.L	Lum. (pb-1)	$BR(B_s \rightarrow \mu + \mu -)$
	364	< 1.5 10 ⁻⁷
BØ	300	< 3.0 10-7
Combined:	< 1.2 x 10 ⁻⁷	


Tracey Berry 21st September, 2005

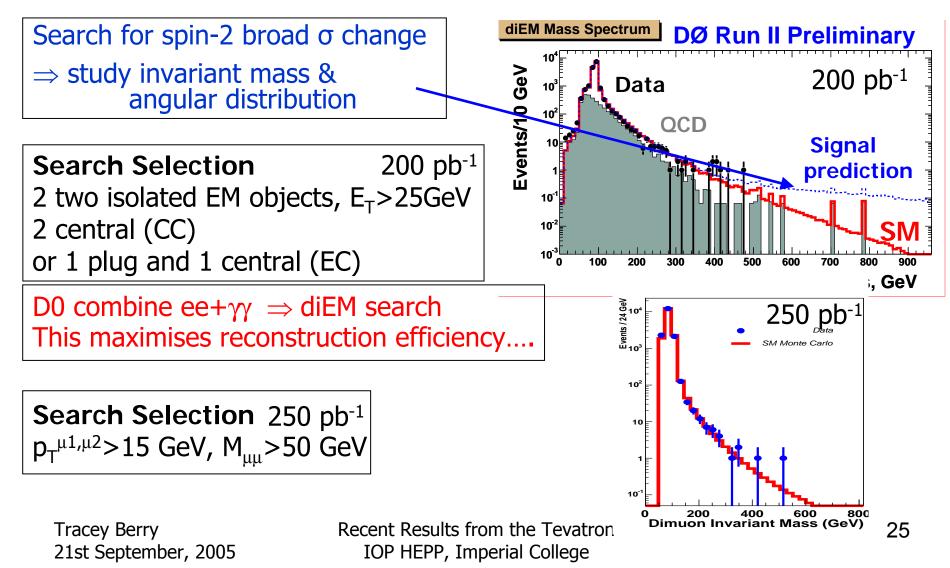
Extra Dimensional Models



Alternatives to SUSY for solving the hierarchy problem: M_{EW} (1 TeV) << M_{Planck} (10¹⁹ GeV)?

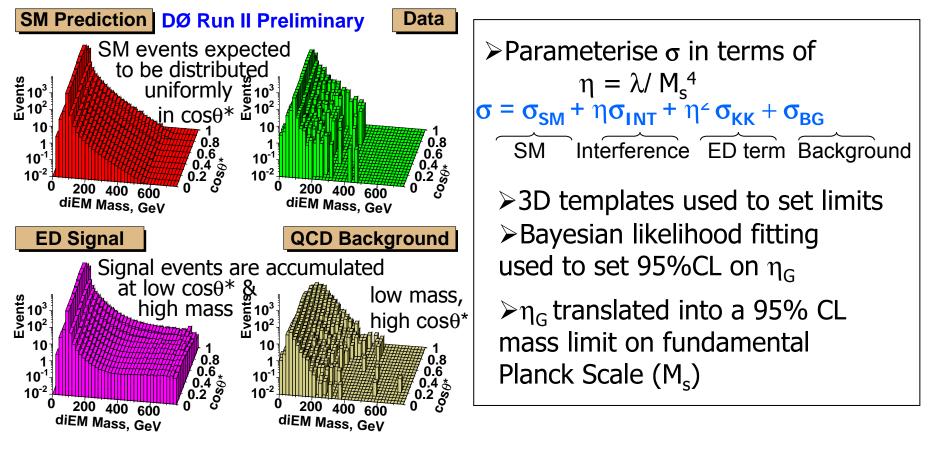
Tevatron Exchange ED Search Strategies

<u>D0 Search Strategy:</u> ee, $\mu\mu$, $\gamma\gamma$


- Perform model specific searches
- > Optimise for specific search:
 - ADD case: combine $ee + \gamma \gamma$ to gain in efficiency
- > 3D fits in angular distribution and invariant mass performed

Tracey Berry 21st September, 2005

ADD LED: D0 ee+γγ & μμ


ADD: many Large ED in which gravitons can propagate

ADD LED: D0 ee+γγ & μμ

D0 perform a combined fit of the invariant mass and angular information Fit combined $M_{ee/\gamma\gamma}$ and $\cos\theta^*$ spectrum to extract limits

Tracey Berry 21st September, 2005

Both D0 and CDF have observed no significant excess

95% CL lower limits on fundamental Planck scale (M_s) in TeV, using different formalisms:

	GRW	HLZ for n=					Hewett	
		2	3	4	5	6	7	λ=+1/-1
D0 Run II: μμ	1.09	1.00	1.29	1.09	0.98	0.91	0.86	0.97/0.95
D0 Run II: $ee + \gamma \gamma$	1.36	1.56	1.61	1.36	1.23	1.14	1.08	1.22/1.10
D0 Run I+II: ee+γγ	1.43	1.61	1.70	1.43	1.29	1.20	1.14	1.28/NA
CDF Run II: ee	1.11		1.32	1.11	1.00	0.93	0.88	0.96/0.99

D0 Run II $\mu\mu$ result: tightest limits on LED from a single measurement in this channel! D0 combined $ee+\gamma\gamma$ Run I & Run II result is the most stringent limit on LED to date!

Tracey Berry 21st September, 2005

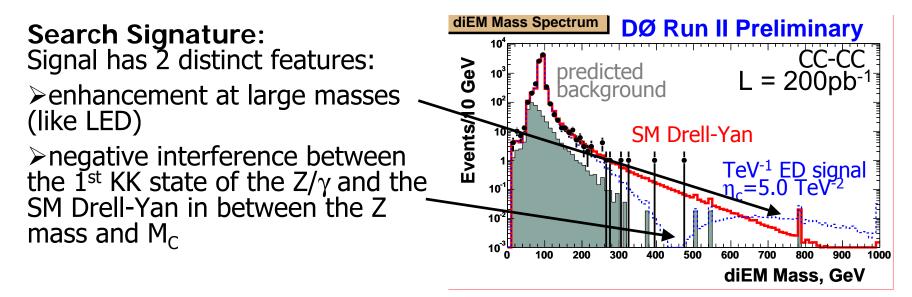
D0's High Mass (ee & γγ) Events

DØ Run II Preliminary

Hints of New Physics?

200 pb⁻¹ 6 8 events with M>350 GeV ➢ 6 form a bump around 400 GeV Events/10 $Z' \rightarrow ee resonance?$ •No: have 1 or 0 tracks AND •Bump twice as narrow as expected 10⁻² from a narrow resonance smeared with 200 300 400 500 600 700 800 900 typical D0 EM calorimeter resolution diEM Mass, GeV \succ 2 highest mass events: have very low $\cos\theta^*$ (0.01, 0.03) i.e. possess kinematics typical of signal from large ED. One is a e^+e^- pair and the other $\gamma\gamma$ (Very high scattering angle: \Rightarrow excellent candidates close to $\pi/2$.) for new physics beyond the SM!

iEM Mass Spectrum


Intriguing events – but consistent with the SM

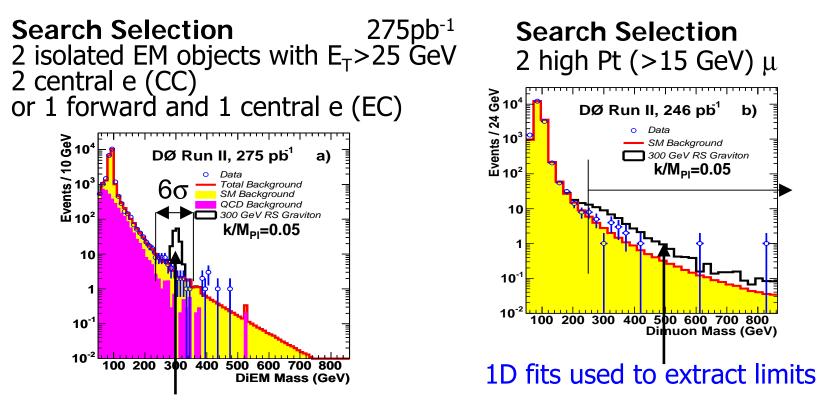
Tracey Berry 21st September, 2005

TeV⁻¹ Size ED: $ee + \gamma \gamma$

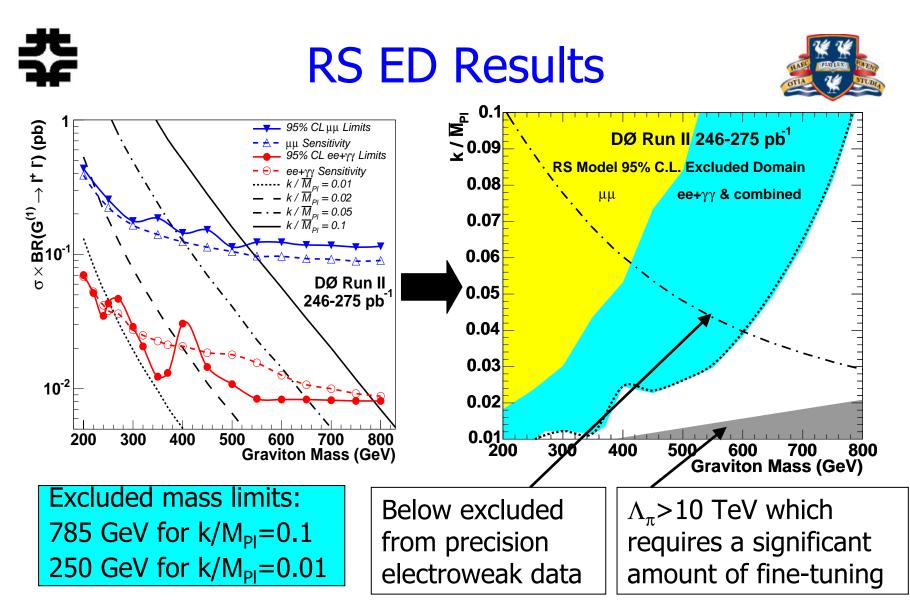
First dedicated experimental search for TeV⁻¹ Size ED at a collider Search for effects of virtual exchanges of the KK states of the Z and γ

Lower limit on the compactification scale of the longitudinal ED: $M_C > 1.12$ TeV at 95% C.L.

World Combined Limit: $M_C > 6.8$ TeV at 95%C.L. Better limits come from precision measurements


Tracey Berry 21st September, 2005

RS ED: $ee + \gamma \gamma \& \mu \mu$

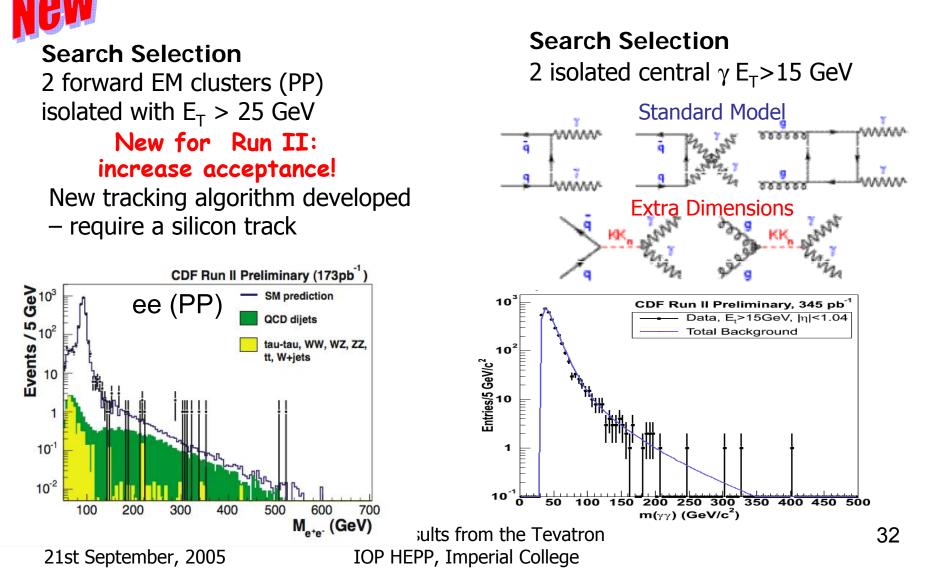


RS: 1 extra compactified/warped ED in which G can propagate Search for spin-2 **resonance** in invariant mass spectrum

Different search windows are used for the $ee+\gamma\gamma$: $\mu\mu$ channels because of the different detector component resolutions

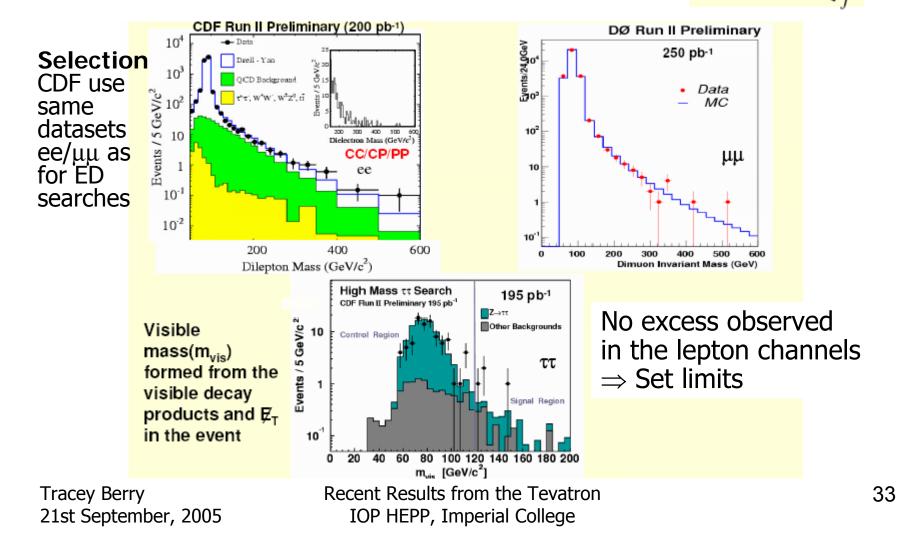
Tracey Berry 21st September, 2005

Most restrictive limits on the RS model parameters to date!


Tracey Berry 21st September, 2005

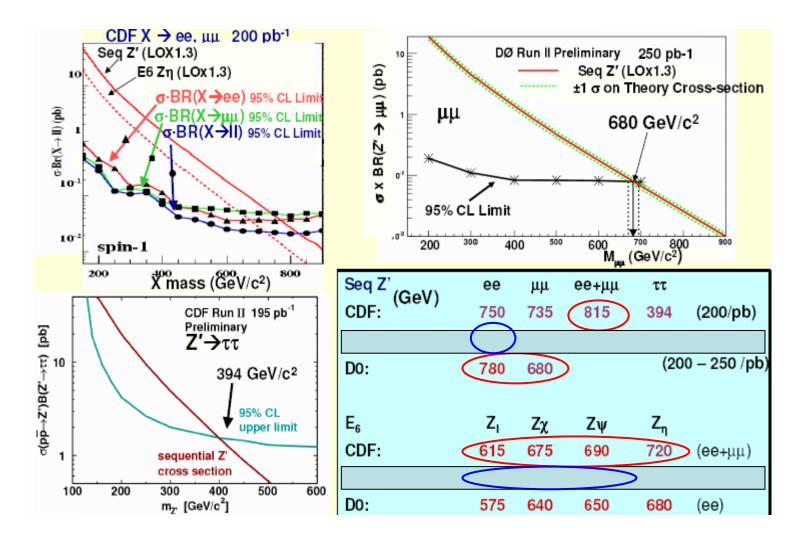
RS ED: ee (PP), γγ

CDF search for RS ED: ee (CC, CP, PP), $\mu\mu$ & $\gamma\gamma$ channels



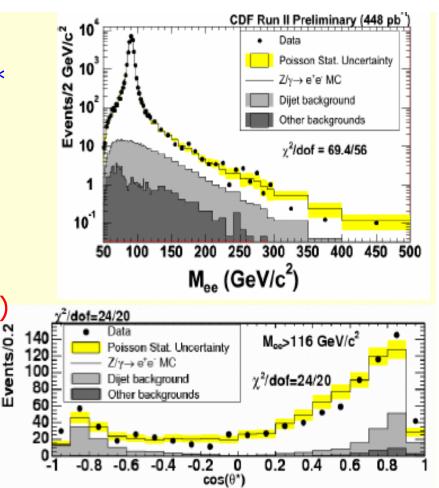
Traditional Z' searches

Z'


Most extensions to SM predict new gauge interactions Most give neutral or singly charged bosons

챢

Tracey Berry 21st September, 2005


New

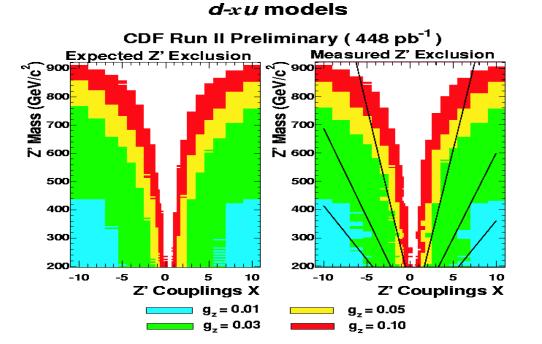
Use dielectron mass Mee and $\cos\theta^*$

Selection $Z' \rightarrow e^+e^-$

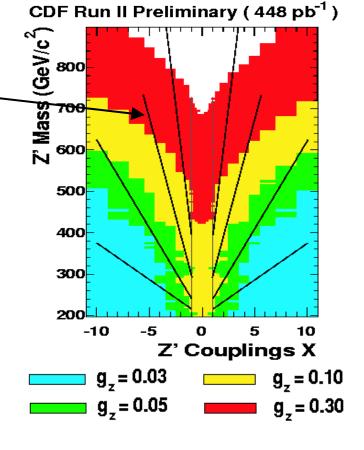
Adding angular information helps For $448pb^{-1}$: using $\cos\theta^* = +25$ % data (seq. Z')

No evidence of signal

Tracey Berry 21st September, 2005



Use General formalism for Z': Allows future models to be easily checked 4 general model classes, each defined by 3 parameters


- Mass M_{Z'}
- Strength $g_{Z'}$
- Parameter x

Carena, Daleo, Dobrescu, and Tait (PRD 70:093009, 2004)

Below black curves are the LEP II exclusion regions: LEP II \rightarrow indirect search via contact interactions

10+*x*5̄ models

CDF & D0 have performed & published/& are performing many exciting new physics searches:

- Z', W', Extra Dimensions, leptoquarks, compositeness, SUSY, excited electrons
- Only a few of the results presented here
- Many are being refined/improved/updated
- Results from 2 experiments are being combined

 \Rightarrow so improved results to come!

- > No evidence for new physics..... yet....
- > Already have a lot of new data to analyse & more on the way!

We hope to discover/find hints of new physics before the LHC!

http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm http://www-cdf.fnal.gov/physics/exotics/exotic.html

Tracey Berry 21st September, 2005

CDF Publications and Preprints for 2005

Search for B0(s) --> mu+ mu- and B0(d) --> mu+ mu- Decays in p anti-p Collisions at s^{**}(1/2) = 1.96 TeV D. Acosta et al., The CDF Collaboration, Phys. Rev. Lett. 93, 032001 (2005) Abstract, PostScript (796KiB), 6875: Added: Thursday, 2005 March 03 11:03:29 CST

Search for Higgs Bosons Decaying into bb-bar and Produced in Association with a Vector Boson in p anti-p Collisions at $s^{**}(1/2) = 1.8$ TeV

D. Acosta et al., The CDF Collaboration, FERMILAB-PUB-05-042-E. Submitted to Phys. Rev. Lett. March 22, 2005. <u>Abstract</u>, <u>PostScript (411KiB)</u>. 7374: Added: Thursday, 2005 March 24 12:31:33 CST

Search for Excited and Exotic Electrons in the e gamma Decay Channel in p anti-p Collisions at $s^{**}(1/2) = 1.96$ TeV D. Acosta et al., The CDF Collaboration, Phys. Rev. Lett. 94, 101802 (2005). Abstract, PostScript (382KiB). 7035: Added: Tuesday, 2005 March 22 09:58:40 CST

Search for Anomalous Production of Diphoton Events with Missing Transverse Energy at CDF and Limits on Gauge-Mediated Supersymmetry-Breaking Models

D. Acosta, The CDF Collaboration, Phys. Rev. D71, 031104 (2005). <u>Abstract</u>, <u>PostScript (213KiB)</u>, 7085: Added: Friday, 2005 February 18 10:57:52 CST

Return to top of page. Go to bottom of page.

CDF Publications and Preprints for 2004

Search for Doubly-Charged Higgs Bosons Decaying to Dileptons in p anti-p Collisions at s^{**}(1/2) = 1.96 TeV D. Acosta et al., The CDF Collaboration, Phys. Rev. Lett. 93, 221802 (2004). Abstract, PostScript (252KiB). 6988: Added: Tuesday, 2004 December 28 12:56:50 CST

Search for Scalar Leptoquark Pairs Decaying to nu nu-bar qq-bar in p anti-p Collisions at s^{**}(1/2) = 1.96 TeV D. Acosta et al., The CDF Collaboration, FERMILAB-PUB-04-303-E. Submitted to Phys. Rev. Lett. October 25, 2004. <u>Abstract</u>, <u>PostScript (324KiB)</u>. 7200: Changed: Wednesday, 2004 December 22 08:22:54 CST

Search for Kaluza-Klein Graviton Emission in p anti-p Collisions at s^{**}(1/2) = 1.8 TeV using the Missing Energy Signature. D. Acosta et al., The CDF Collaboration, Phys. Rev. Lett. 92, 121802 (2004). <u>Abstract</u>, <u>PostScript (315KiB)</u>, 6501: Added: Friday, 2004 April 02 15:58:55 CST

Search for Pair Production of Scalar Top Quarks in R-parity Violating Decay Modes in p anti-p Collisions at s^{**}(1/2) = 1.8 TeV D. Acosta et. al., The CDF Collaboration, Phys. Rev. Lett. 92, 051803 (2004). Abstract, PostScript (317KiB). 6339: Added: Friday, 2004 February 06 12:58:37 CST

Tracey Berry 21st September, 2005

D0 Publications

- New Physics
- <u>Search for Randall-Sundrum Gravitons in Dilepton and Diphoton Final States</u>, Figures, 260 pb-1, <u>hep-ex/0505018</u>, Plain English Summary, FERMILAB-PUB-05/126-E, <u>PRL 95 091801 (2005)</u>
- <u>Search for first-generation scalar leptoquarks...</u>, <u>Figures</u>, 252 pb-1; <u>hep-ex/0412029</u>, <u>Plain English Summary</u>, FERMILAB-PUB-04/389-E; <u>PRD 71, 071104 (2005)</u>
- <u>A search for anomalous heavy-flavor quark production...</u>, <u>Figures</u>, 145-164 pb-1; <u>hep-ex/0411084</u>, <u>Plain English Summary</u>, FERMILAB-PUB-04/359-E; <u>*PRL 94, 152002 (2005).*</u>
- <u>Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events at DØ</u>, Figures, 263 pb-1; <u>hep-ex/0408146</u>; <u>Plain English Summary</u>, FERMILAB-PUB-04/198-E; <u>PRL 94, 041801 (2005)</u>.
- Higgs
- <u>A measurement of the ratio of inclusive cross sections Zb/Zj...</u>, <u>Figures</u>, 152-184 pb-1; <u>hep-ex/0410078</u>, <u>Plain English Summary</u>, FERMILAB-PUB-04/297-E; <u>PRL 94, 161801 (2005)</u>
- <u>A search for Wbb and WH production in ppbar collisions at sqrt(s)=1.96 TeV, Figures</u>, 174 pb-1; <u>hep-ex/0410062</u>, <u>Plain English Summary</u>, FERMILAB-PUB-04/288-E; <u>PRL 94, 091802 (2005)</u>
- <u>Search for Doubly-charged Higgs Boson Pair Production..., Figures;</u> <u>hep-ex/404015</u>, <u>Plain English Summary</u>, FERMILAB-PUB-04/045-E; <u>PRL 93, 141801 (2004)</u>