$H \rightarrow AA$ at TEVATRON

Guiyu Huang (UW-Madison)

TeV4LHC Workshop 10/20/2005

ongoing work with

M. Carena (FNAL), T. Han (UW-Madison), C. Wagner (ANL)

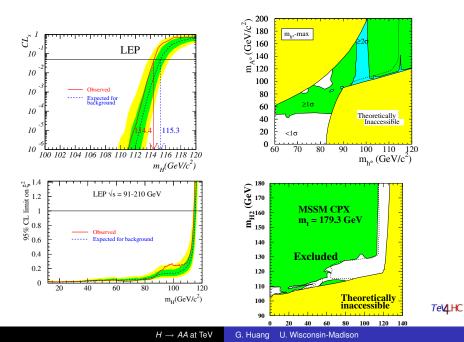
Outline

Exploring Further

- LEP's Exclusion, and Escape
- Models

2 Light *h*, *A* Detection at Tevatron

- Production
- Decay Channels
- Relevant Parameters
- Signals vs Background
 - Background
 - Cuts
 - Signal



Discussion

Moving Beyond

Standard Model

- Extending SM
 Extended Higgs-sector, SUSY,
 Extra Dimension, Little Higgs, ...
- Extending MSSM (μ problem, little hierachy, fine tuning) NMSSM, nMSSM, UMSSM, CPX...

To Achieve the Escape

Many Possibilities!

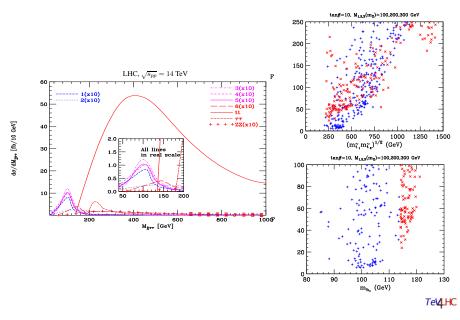
e.g. Seventeen distinct sectors in MSSM G.Kane, B.Nelson, L.Wang, T.Wang hep-ph/0407001

Reduced production?

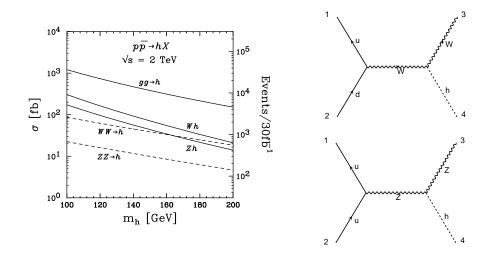
Higgs couplings suppressed with richer Higgs structure e.g. $\cos^2(\beta - \alpha)$ in MSSM

Missed Routes?

Non-Standard Higgs Decay Modes e.g. $H \rightarrow AA$. NMSSM, MSSM with CPV

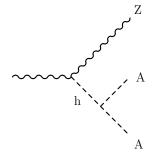

TeVALHC

$H \rightarrow AA$


In the context of NMSSM

- Emphasized by J.Gunion, H.Haber, T.Moroi hep-ph/9610337
- Studied by B.Dobrescu,G.Landsberg,K.Matchev hep-ph/0005308, hep-ph/0008192
 BR(h → AA) ~ 1 not very restrictive for c in trilinear term CV/2 hAA. ~ O(1)
- and Ellwanger,Gunion,Hugonie,Moretti hep-ph/0305019, hep-ph/0401228
- and R.Dermisek, J.Gunion hep-ph/0502105

• ...



W/Z Associated Production

W/Z: Leptonic, H: (pseudo)scalar pair ($M_H > 2M_A$)

- $W/Z \rightarrow I\nu_I/I^+I^$ lepton (e, μ) signature
- Higgs to scalar pair AA
- $A, A \rightarrow b\bar{b}, \tau\bar{\tau}$ respectively

Typical Parameter Choices

•
$$M_H = 80 \sim 120 GeV$$
 $M_A < M_H/2, \sim 30 GeV$ (flexible)

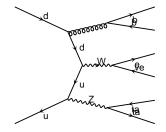
- $\kappa_{HWW} \sim$ 0.7, ALMOST at full (SM) strength
- $\mathcal{B}(H \rightarrow aa) \sim 0.85$

•
$$\mathcal{B}(a \rightarrow b\bar{b}) \sim 0.92$$
, $\mathcal{B}(a \rightarrow \tau \bar{\tau}) \sim 0.08$

Cross section modified from SM by:

$$2\kappa_{HWW}^2 \mathcal{B}(H
ightarrow aa) \mathcal{B}(a
ightarrow bar{b}) \mathcal{B}(a
ightarrow auar{ au})$$

Similar to $C_{h\rightarrow 2b2\tau}^2$ defined by e.g. DELPHI hep-ex/0410017. Consistent with C^2 constraints.


Background Cuts Signal

No New Interactions Enter

SM contribution, dominantly (> 90%) from:

 $W (\rightarrow l\nu)$ $Z (\rightarrow l + l -)$ bb (via gluon)

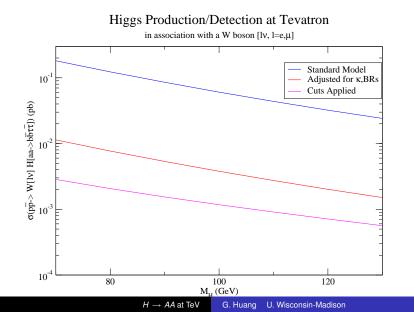
(W/Z almost on shell)

Rather Independent of Higgs mass/couplings.

Acceptance Cuts

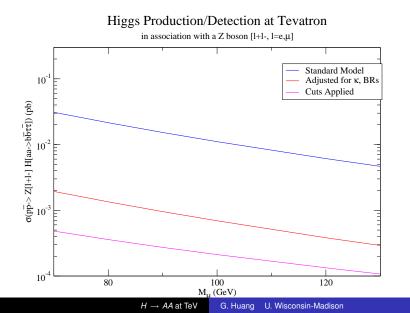
•
$$P_T > 10 GeV$$
 (b, τ, I, ν)

• |y| < 3.0 (*b*, τ , *l*). for *b* can be relaxed


•
$$\Delta R > 0.4$$
 (bb, $\tau \tau, \tau I$)

•
$$m_{inv}$$
 : $m(b\bar{b}), m(\tau\bar{\tau}) > 20 GeV$. not essential

After cuts, $\sigma_{\textit{background}} \sim 20 imes 10^{-3} {\rm fb}$

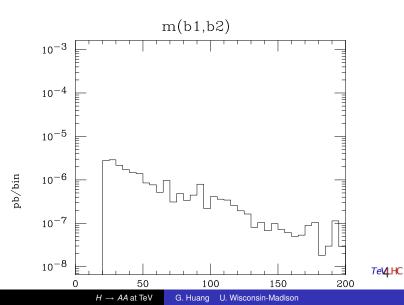

4HC

Signal: Cross section


4HC

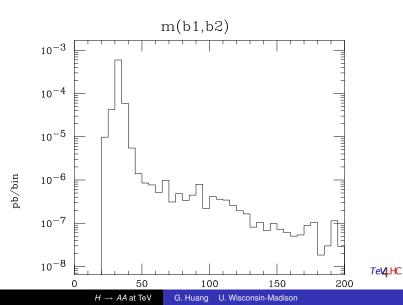
Signal: Cross section

WHY HOW WHAT Discussion Background Cuts Signal


bb Invariant Mass: Background

WHY HOW WHAT Discussion

Background Cuts Signal


bb Inv Mass: Signal vs Background

WHY HOW WHAT Discussion

Background Cuts Signal

bb Inv Mass: Signal vs Background

- Good Signal/Background Ratio
- Readily Detectable with Sufficient Luminosity
- Determination of h, A masses
- Other Channels (4b, 4 τ)
- Other Colliders