ILC BDS Tuning and BeamBased Alignment

Glen White
 SLAC/QMUL
 Sept. 272005

-Tuning and alignment strategy for the BDS
-Preliminary results and progress report
-Future plans

BDS Alignment and Tuning Simulations

- Using most recent (pre-Snowmass) 20mrad BDS deck from MW with FF9 final-focus optics plus extraction line.
- Start with expected post-survey magnet and BPM alignment tolerances, magnet errors and BPM resolutions.
- Simulate BPM-Magnet alignment using Quad-shunting technique and fits to higher-order magnet moves (Sexts, Octs, Decs).
- Steer/move to BPM readings with measured alignment.
- Generate orthogonal knobs for correction of IP waists, dispersion (x \& y) and x-y coupling.
- Simulation tool used: Lucretia.

Initial Parameter Assumptions

- Magnet and BPM RMS mis-alignment: 200um.
- Magnet rotation: 300urad.
- RMS relative magnetic strength error: 0.1\%.
- Magnet mover resolution (x \& y): 50nm.
- BPM resolution: 1um.
- Assume incoming beam centered with respect to $1^{\text {st }}$ quad to within BPM res.
- Each magnet modeled as split thick-lens magnet with BPM and x, y correctors at centre.
- Use TESLA bunch parameters (ideal gaussian) with $10^{-4} \mathrm{E}$ uncorl. E spread.
- Track 1000 macro-particles per bunch.

BPM-Magnet Alignment

- Switch off Sexts, Octs, Decs initially.
- Apply 1-1 steering to centre beam in Quad BPMs with initial alignment tolerances.
- Use 'Quad Shunting' technique to get BPM-Quad offsets using shift in downstream 20 Quad BPMs for each Quad being aligned when switching off Quads power (using ext. line BPMs for last few Quads).
- i.e. use weighted-fit to:

$$
x_{Q u a d}=\Delta x_{B P M} /\left(\Delta R_{Q}(1,1) * R(1,1)+\Delta R_{Q}(2,1) * R(1,2)\right)
$$

Quadrupole Alignment Results

- BPM-Quad alignments (RMS misalignment from 50 seeds).

Sextupole, Octupole, Decupole Alignment

- Use x-, y-movers on higher-order magnets and fit $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ order polynomials to downstream BPM response (for Sext, Oct and Dec respectively). Use BPM with largest response for alignment measurement (alignment is where $2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ derivitive is 0 from fits).
- Sextupoles:
-20 moves $+/-1 \mathrm{~mm}$ in x and y.
- Octupoles:
- 20 moves $+/-2.5 \mathrm{~mm}$ in x and y .
- Need to increase strength of Octs \# 6,7 and 8 by a factor of 10 to get reasonable fits (not fully optimised yet).
- Decupoles:
- 20 moves $+/-4 \mathrm{~mm}$ in x and y.
- Increase strength by factor 10 to try to get good fits.
- Fails- left with initial alignment errors.

Alignment Results (Sextupoles and Octupoles)

- BPM-Sext,Oct alignments (RMS mis-alignment from 50 seeds).

Post-BPM Aligment Steering

- After getting BPM-Magnet alignment:
- Steer to Quad centres with Sexts etc off.
- Move Sexts, Octs, Decs on-orbit with movers.
- Switch on all magnets.
- Ideally use Quad movers to move quads onto alignment, minimising dispersive kicks- still under study, for now use 1-1 steering.

Post-Alignment and Steering

 Results

- RMS beam orbit after alignment and steering (50 seeds).

Post-Alignment and Steering Results

- IP x- and y- (normalised) emittances (50 seeds).
- Mean= 10.5 um (x) 1.3 um (y).
- Initial= 10 um (x) 30nm (y).

Post-Alignment and Steering Results

- IP x- and y-Dispersion (50 seeds).
- RMS= 1.5mm (x) 0.4mm (y)

Post-Alignment and Steering Results

- IP X-Y coupling (50 seeds).
- RMS=0.11.

Generating IP Tuning Knobs

- Use x - and y-moves of 5 Sextupole magnets to generate IP x - and y-dispersion and waist tuning knobs and $x-y$ coupling knobs.
- Generate response matrix to map Sextupole movements to IP parameters.
- Use SVD matrix inversion to get tuning knobs.
- Best results seen over wider range if use all 10 movement parameters.
- Initial test of knobs- move all 5 knobs and measure dispersion, waist and coupling changes.

Test of IP Multi-Knobs

Future Plans

- Implement Quad mover steering.
- Get IP multi-knobs working after alignment + steering phase.
- Simulate 2 beams- tune on luminosity (pair signals).
- Include LINAC to get real bunch shapes.
- Include GM.
- Integrated time-evolved simulation with initial tuning + pulse-pulse FB + intra-bunch FB.
- Provides information on how often re-tuning necessary and most detailed luminosity performance estimate.

