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Introduction

• Dispersion bump as a complement to Dispersion Free Steering.

• TESLA linac lattice misaligned according to TRC scheme.

• Two methods of DFS tested.

- After grad-grad: ∆εy(90%) ≈ 55nm

- After energy-grad: ∆εy(90%) ≈ 25nm

• Target is ∆εy(90%) < 10nm



Misalignment Model

• TRC model

- σquad = 300 µm

- σcav = 300 µm

- σ′

cav = 200 µradian

- σbpm = 200 µm

- σres = 10 µm

- σmodule = 200 µm



Dispersion Free Steering

• Two DFS methods

DFS method Beam 1 Beam 2 Beam 3

gradient-gradient nominal 10% lower gradient 20% lower gradient

energy-gradient nominal 20% lower gradient 20% lower energy



Results of DFS

• Optimal weights for DFS.
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• After DFS. BPMres = 10µm (not very dif-

ferent in case of 5, 2, 1 µm.)
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Dispersion bumps

• Each bump controlled by two knobs. One adjusting the dispersion and one adjusting disper-

sion derivative.

• Bumps were implemented as a change of the particle coordinates at a given point.

• Brents method was used for optimisation of the knobs.

• Procedure iterated until convergence.

• For each bump setup, 100 machines were simulated.

• Laserwires were used to evaluate the effect of the bumps.



Using two dispersion bumps

• One bump in beginning and one in the end. BPMres = 10µm.

• Two bumps enough to bring emittance close to target.
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Effect of BPM resolution

• Gradient-gradient method.
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• Energy-gradient method.
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Adding a third dispersion bump

• A third dispersion bump in the middle of the linac does not improve performance.

• Instead the use of a wakefield bump was tested (see next slides)
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Wakefield bumps

• Controlled by two knobs. One knob offsets one quadrupole by an amount ∆y and another

quadrupole 360 degrees later by an amount −∆yK1/K2 to kick the beam back into its orbit.

Second knob acts on the beam at a phase 60 degrees from the other.

• The pairs of quadrupoles are positioned after a third and two thirds of the linac respectively.

• Same optimisation method as before was used.



Two dispersion and one wakefield bump

• Both methods of DFS now fulfil the emittance requirements.

- Gradient-gradient: ∆σy(90%) ≈ 6nm

- Energy-gradient: ∆σy(90%) ≈ 5nm
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Emittance along the linac

• Wakefield bump gives rise to dispersion that might be better to remove as fast as possible.

• Position of the quadrupole pairs modified to get better performance. Move closer to each

other.
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Two dispersion and one wakefield bump (new setup)

• Far better emittance than the target.

• Worst case simulated, i.e. gradient-gradient DFS, BPMres = 10µm

• % of machines above ∆εy
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• ∆εy vs optimisation steps
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Three dispersion and two wakefield bumps

• With another wakefield and dispersion bump the final emittance is only slightly improved.
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Comparison

• 2 dispersion + 1 wakefield bump compared to 3 dispersion + 2 wakefield bumps.

• The already low emittance growth is reduced by 15%

• The emittance along the linac looks nicer.
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Robustness

• Only preliminary results (4 machines simulated)

• Final states of machines after DFS and bump tuning used.

• Sensitivity to variations in bunch charge and phase studied.

• Effect of RF grad. and bunch length should be studied.

• charge σ = 5%

machine nr orig. ε mean ε proj. ε

1 20.1577 20.1635 20.1679

2 20.2084 20.2141 20.2171

3 20.2434 20.2549 20.2665

4 20.0419 20.0429 20.0416

• phase σ = 1o

machine nr orig. ε mean ε proj. ε

1 20.1577 20.3447 22.3215

2 20.2084 20.3127 21.3749

3 20.2434 20.4338 24.5214

4 20.0419 20.0654 20.3069



Conclusion

• DFS steering does not reach emittance target on its own.

• Dispersion bumps very effecient (2 bumps seems enough).

• Dispersion bumps + wakefield bumps give very good results. ∆εy < 1.5nm.

• Extra wakefield and dispersion bump improves results slightly.

• For final state linac seems quite robust, not sensitive to bunch charge variations, projected

emittance affected by phase variations.



Ongoing studies, future work

• Some simulations have been performed to find the optimal position of bumps. More work

needed.

• To get faster knob convergence independant knobs ate needed. Some work done already,

but much more needed.

• Real bumps/knobs should be designed.

• Further studies of robustness needed. Might be sensitive to phase variations. What about

RF grad, bunch length, ground motion, quadrupole jitter, klystron failure?


