Tuning bumps in the main linac

P. Eliasson D. Schulte

Introduction

- Dispersion bump as a complement to Dispersion Free Steering.
- TESLA linac lattice misaligned according to TRC scheme.
- Two methods of DFS tested.
- After grad-grad: $\Delta \epsilon_{y}(90 \%) \approx 55 \mathrm{~nm}$
- After energy-grad: $\Delta \epsilon_{y}(90 \%) \approx 25 \mathrm{~nm}$
- Target is $\Delta \epsilon_{y}(90 \%)<10 \mathrm{~nm}$

Misalignment Model

- TRC model
- $\sigma_{\text {quad }}=300 \mu \mathrm{~m}$
- $\sigma_{c a v}=300 \mu \mathrm{~m}$
- $\sigma_{\text {cav }}^{\prime}=200 \mu$ radian
- $\sigma_{b p m}=200 \mu \mathrm{~m}$
- $\sigma_{r e s}=10 \mu \mathrm{~m}$
- $\sigma_{\text {module }}=200 \mu \mathrm{~m}$

Dispersion Free Steering

- Two DFS methods

DFS method	Beam 1	Beam 2	Beam 3
gradient-gradient	nominal	10\% lower gradient	20\% lower gradient
energy-gradient	nominal	20\% lower gradient	20\% lower energy

Results of DFS

- Optimal weights for DFS.

- After DFS. $\mathrm{BPM}_{\text {res }}=10 \mu m$ (not very different in case of $5,2,1 \mu \mathrm{~m}$.)

Dispersion bumps

- Each bump controlled by two knobs. One adjusting the dispersion and one adjusting dispersion derivative.
- Bumps were implemented as a change of the particle coordinates at a given point.
- Brents method was used for optimisation of the knobs.
- Procedure iterated until convergence.
- For each bump setup, 100 machines were simulated.
- Laserwires were used to evaluate the effect of the bumps.

Using two dispersion bumps

- One bump in beginning and one in the end. $\mathrm{BPM}_{\text {res }}=10 \mu \mathrm{~m}$.
- Two bumps enough to bring emittance close to target.

Effect of BPM resolution

- Gradient-gradient method.

- Energy-gradient method.

Adding a third dispersion bump

- A third dispersion bump in the middle of the linac does not improve performance.
- Instead the use of a wakefield bump was tested (see next slides)

Wakefield bumps

- Controlled by two knobs. One knob offsets one quadrupole by an amount Δy and another quadrupole 360 degrees later by an amount $-\Delta y K_{1} / K_{2}$ to kick the beam back into its orbit. Second knob acts on the beam at a phase 60 degrees from the other.
- The pairs of quadrupoles are positioned after a third and two thirds of the linac respectively.
- Same optimisation method as before was used.

Two dispersion and one wakefield bump

- Both methods of DFS now fulfil the emittance requirements.
- Gradient-gradient: $\Delta \sigma_{y}(90 \%) \approx 6 \mathrm{~nm}$
- Energy-gradient: $\Delta \sigma_{y}(90 \%) \approx 5 \mathrm{~nm}$

Emittance along the linac

- Wakefield bump gives rise to dispersion that might be better to remove as fast as possible.
- Position of the quadrupole pairs modified to get better performance. Move closer to each other.

Two dispersion and one wakefield bump (new setup)

- Far better emittance than the target.
- Worst case simulated, i.e. gradient-gradient DFS, $\mathrm{BPM}_{\text {res }}=10 \mu \mathrm{~m}$
- \% of machines above $\Delta \epsilon_{y}$

- $\Delta \epsilon_{y}$ vs optimisation steps

Three dispersion and two wakefield bumps

- With another wakefield and dispersion bump the final emittance is only slightly improved.

Comparison

- 2 dispersion +1 wakefield bump compared to 3 dispersion +2 wakefield bumps.
- The already low emittance growth is reduced by 15%
- The emittance along the linac looks nicer.

Robustness

- Only preliminary results (4 machines simulated)
- Final states of machines after DFS and bump tuning used.
- Sensitivity to variations in bunch charge and phase studied.
- Effect of RF grad. and bunch length should be studied.
- charge $\sigma=5 \%$

machine nr	orig. ϵ	mean ϵ	proj. ϵ
1	20.1577	20.1635	20.1679
2	20.2084	20.2141	20.2171
3	20.2434	20.2549	20.2665
4	20.0419	20.0429	20.0416

- phase $\sigma=1^{0}$

machine nr	orig. ϵ	mean ϵ	proj. ϵ
1	20.1577	20.3447	22.3215
2	20.2084	20.3127	21.3749
3	20.2434	20.4338	24.5214
4	20.0419	20.0654	20.3069

Conclusion

- DFS steering does not reach emittance target on its own.
- Dispersion bumps very effecient (2 bumps seems enough).
- Dispersion bumps + wakefield bumps give very good results. $\Delta \epsilon_{y}<1.5 \mathrm{~nm}$.
- Extra wakefield and dispersion bump improves results slightly.
- For final state linac seems quite robust, not sensitive to bunch charge variations, projected emittance affected by phase variations.

Ongoing studies, future work

- Some simulations have been performed to find the optimal position of bumps. More work needed.
- To get faster knob convergence independant knobs ate needed. Some work done already, but much more needed.
- Real bumps/knobs should be designed.
- Further studies of robustness needed. Might be sensitive to phase variations. What about RF grad, bunch length, ground motion, quadrupole jitter, klystron failure?

