
Feedback Simulation Studies

A. Latina

• Different levels of feedback

- no feedback

- intra-pulse position feedback

- + pulse-to-pulse orbit feedback

- intra-pulse luminosity optimisation

- + pulse-to-pulse orbit feedback



Simulation Procedure

• All simulations were performed with PLACET (beam transport) and GUINEA-PIG (beam-

beam effects)

• Only beam delivery systems are included

• Consistent ground motion is taken for electrons and positrons

• Simple feedback algorithm used

• Beam-beam feedback based on BPM after collision point

• Orbit feedback based on BPMs and dipole correctors in beam delivery system

• Simulations performed using separated tracking/correction modules



Ground Motion

• Studies are based on TRC ground motion models (from A. Seryi)

- B: medium stable stable

- C: noisy site

• Model takes into account the correlation of the ground motion

• For the study, the motion during the pulse duration is neglected



Feedbacks Schema for ILC

• pulse-to-pulse orbit feedback:

- orbit correction based on BPM readings and dipole correctors

- 14 correcting dipoles

- 136 BPMs

• intra-pulse feedback:

- Beam-Beam correction based on BPM after collision point

- Luminosity optimization based on offset scan or direct maximization



Feedback Algorithms Used

• Orbit feedback:

- Response matrix: x = R · u

(’u’ knobs = strength of the dipoles, ’x’ state = BPM readings)

- Kalman gain matrix: x̂ = Ax + Bu, ...

(control theory formalism, more details later)

• Beam-Beam feedback:

- Response matrix

- Scan method (changing only the last dipole)

- Bracketing method (changing only the last dipole)



ILC Results

Simulation when no feedbacks are active for the models B and C

• Perfect alignment at t=0

- L0 ≃1.40·1034 cm2s−1

• After 60 seconds:

⇒ B: L ≃ 50% L0

⇒ C: L ≃ 30% L0  0
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ILC Simulation with no Feedbacks

• Perfect alignment at t=0

• 3 seconds after:

⇒ B: L ≃ 80% L0

⇒ C: L ≃ 50% L0
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Intra-Pulse Optimization with Pulse-to-Pulse Orbit FB (B)
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⇒ Orbit Feedback:

Response Matrix

⇒ Intra-pulse optimization

helps significantly

⇒ The efficiency of the pulse-to-pulse

orbit feedback has to be studied



Intra-Pulse Optimization without Pulse-to-Pulse FB (B)

Optimization with / without P-to-P orbit feedback.

- P-to-P orbit feedback recovers ≈1% of

the luminosity

⇒ Pulse-to-pulse feedback helps
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Intra-Pulse Optimization with Pulse-to-Pulse Orbit FB (C)
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⇒ Intra-pulse feedback

helps significantly

- Intra-pulse BB works fine

- Intra-pulse optimization has to

be analyzed

⇒ Like in the model B, P-to-P orbit

feedback alone seems not to pro-

duce good results



Intra-Pulse Optimization without Pulse-to-Pulse FB (C)

Optimization with / without P-to-P orbit feedback

- P-to-P orbit feedback helps to recover

≈5-8% of luminosity

- Notice that luminosity optimization

overcomes the Beam-Beam FB

⇒ Pulse-to-pulse feedback helps
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Comparison between P-to-P and IP feedbacks, for model B

• First 6 seconds, P-to-P orbit

feedback alone

• Intrapulse feedback is

switched on at the 6th

second.
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Comparison between P-to-P and IP feedbacks, for model C

• First 6 seconds, P-to-P orbit

feedback alone

• Intrapulse feedback is

switched on at the 6th

second.
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Improvement: Feedback System Based on Kalman Filter

• Use of the digital control theory formalism

• Kalman Filter:

- estimates the state of the system from a vector of measurements

- applies a gain matrix to determine the corrections for the predicted state vector

- keeps into account the noise in the measurements and in the state vector

- minimizes the rms of the state vector (e.g. position of the beam)



Feedback based on Kalman Filter

estimation
Kalman state

x

u

BPM readings

Feedback

Observer

Controller

BPM target values

- x = Ax + Bu a priori state estimation

- y = Cx measurement

- K =
C

(C CT + R)
Kalman gain

- x̂ = x + K (y − Cx) state estimation

- u = −K x̂ Feedback

- ~x state vector: BPM readings, ...

- ~u knobs: dipoles’ strength, ...



Kalman Filter vs. Matrix Optimization for CLIC
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Work in Progress: Extended Kalman Filter + Neural Networks

• Limits of the KF:

- assumes that the state of the process is governed by a linear difference equation

- assumes that the errors affecting the state and the measurements are Gaussian

⇒ the response function and the errors are not linear!

• Possible solution: Extended Kalman Filter + Neural Networks:

• EKF:

- works like the KF, but with a non-linear function as system response

• NN:

- provides the non-linear system response function to the EKF,

- as neural networks can be trained on-line, their response improves dynamically.


