Feedback Simulation Studies

A. Latina

- Different levels of feedback
 - no feedback
 - intra-pulse position feedback
 - + pulse-to-pulse orbit feedback
 - intra-pulse luminosity optimisation
 - + pulse-to-pulse orbit feedback

Simulation Procedure

- All simulations were performed with PLACET (beam transport) and GUINEA-PIG (beambeam effects)
- Only beam delivery systems are included
- Consistent ground motion is taken for electrons and positrons
- Simple feedback algorithm used
- Beam-beam feedback based on BPM after collision point
- Orbit feedback based on BPMs and dipole correctors in beam delivery system
- Simulations performed using separated tracking/correction modules

Ground Motion

- Studies are based on TRC ground motion models (from A. Seryi)
 - B: medium stable stable
 - C: noisy site
- Model takes into account the correlation of the ground motion
- For the study, the motion during the pulse duration is neglected

Feedbacks Schema for ILC

- pulse-to-pulse orbit feedback:
 - orbit correction based on BPM readings and dipole correctors
 - 14 correcting dipoles
 - 136 BPMs

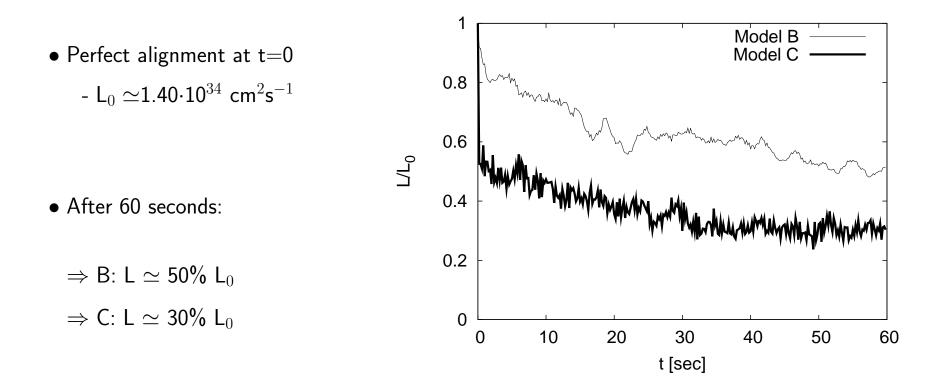
- intra-pulse feedback:
 - Beam-Beam correction based on BPM after collision point
 - Luminosity optimization based on offset scan or direct maximization

Feedback Algorithms Used

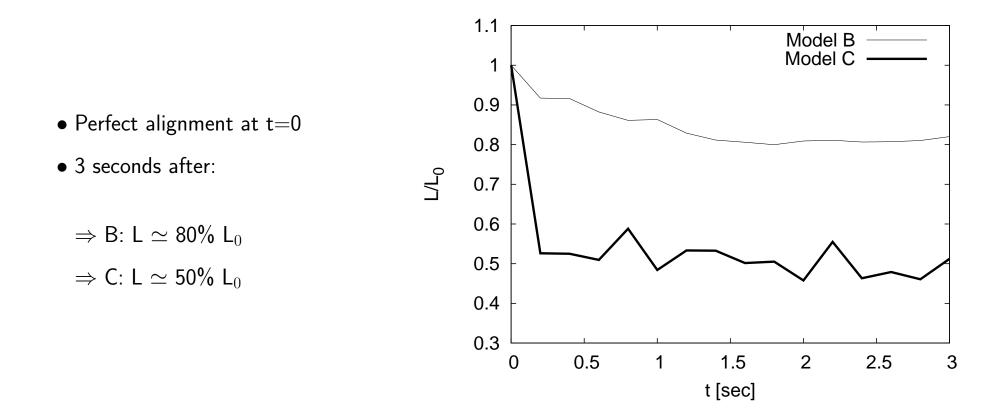
- Orbit feedback:
 - Response matrix: $x = R \cdot u$ ('u' knobs = strength of the dipoles, 'x' state = BPM readings)
 - Kalman gain matrix: $\hat{x} = Ax + Bu$, ... (control theory formalism, more details later)
- Beam-Beam feedback:
 - Response matrix
 - Scan method (changing only the last dipole)
 - Bracketing method (changing only the last dipole)

ILC Results

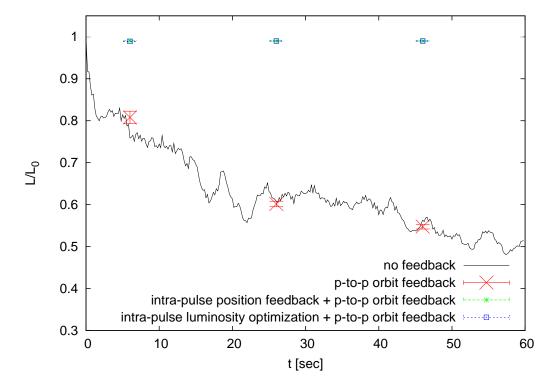
Simulation when **no feedbacks** are active for the models B and C



ILC Simulation with no Feedbacks



Intra-Pulse Optimization with Pulse-to-Pulse Orbit FB (B)



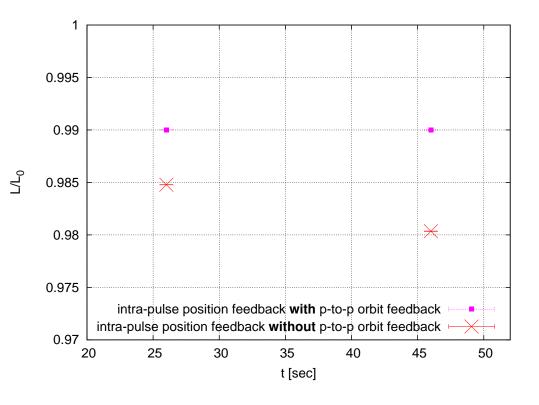
 \Rightarrow Orbit Feedback: Response Matrix

- \Rightarrow Intra-pulse optimization helps significantly
- \Rightarrow The efficiency of the pulse-to-pulse orbit feedback has to be studied

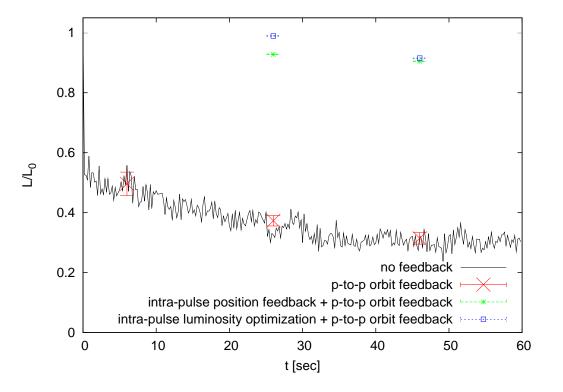
Intra-Pulse Optimization without Pulse-to-Pulse FB (B)

Optimization with / without P-to-P orbit feedback.

- P-to-P orbit feedback recovers ${\approx}1\%$ of the luminosity
- \Rightarrow Pulse-to-pulse feedback helps



Intra-Pulse Optimization with Pulse-to-Pulse Orbit FB (C)

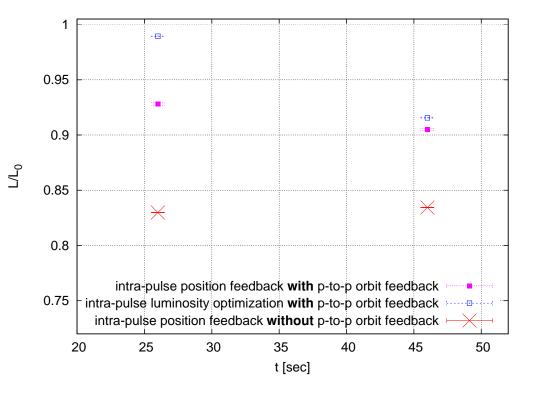


- \Rightarrow Intra-pulse feedback helps significantly
 - Intra-pulse BB works fine
 - Intra-pulse optimization has to be analyzed
- ⇒ Like in the model B, P-to-P orbit feedback alone seems not to produce good results

Intra-Pulse Optimization without Pulse-to-Pulse FB (C)

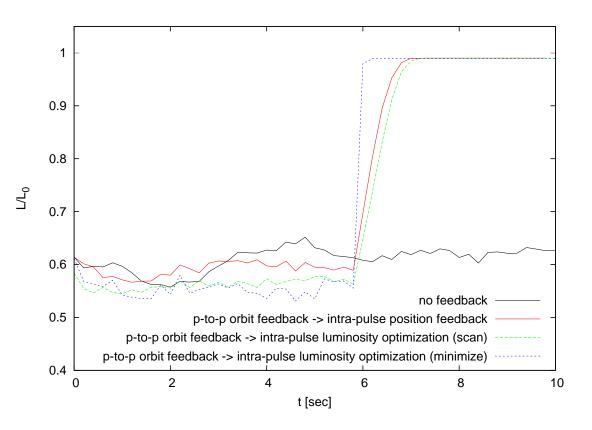
Optimization with / without P-to-P orbit feedback

- P-to-P orbit feedback helps to recover $\approx\!5\text{-}8\%$ of luminosity
- Notice that luminosity optimization overcomes the Beam-Beam FB
- \Rightarrow Pulse-to-pulse feedback helps



Comparison between P-to-P and IP feedbacks, for model B

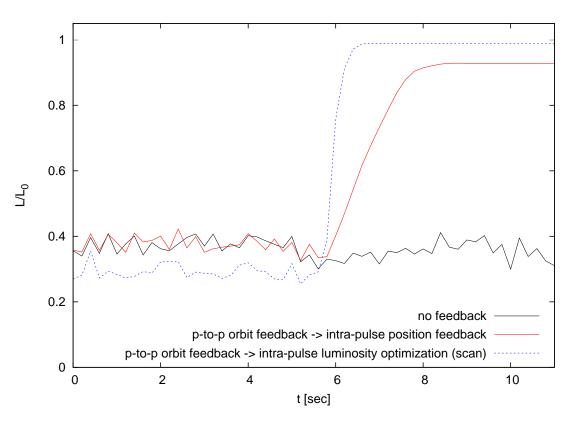
- First 6 seconds, P-to-P orbit feedback alone
- Intrapulse feedback is switched on at the 6th second.



Comparison between P-to-P and IP feedbacks, for model C

• First 6 seconds, P-to-P orbit feedback alone

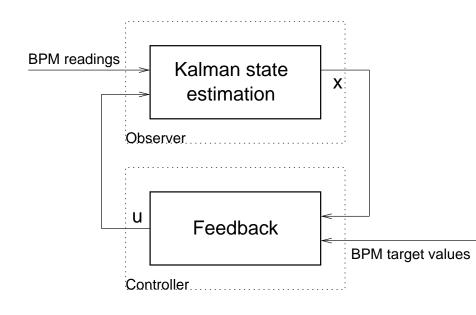
 Intrapulse feedback is switched on at the 6th second.



Improvement: Feedback System Based on Kalman Filter

- Use of the digital control theory formalism
- Kalman Filter:
 - estimates the state of the system from a vector of measurements
 - applies a gain matrix to determine the corrections for the predicted state vector
 - keeps into account the noise in the measurements and in the state vector
 - minimizes the rms of the state vector (e.g. position of the beam)

Feedback based on Kalman Filter

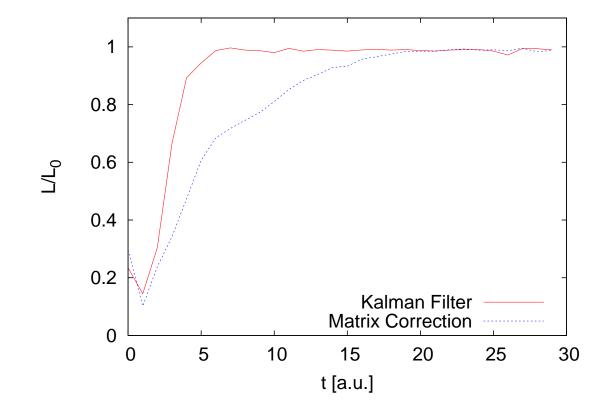


-
$$\overline{x} = Ax + Bu$$
 a priori state estimation
- $y = Cx$ measurement
- $K = \frac{C}{(CC^T + R)}$ Kalman gain
- $\hat{x} = \overline{x} + K(y - C\overline{x})$ state estimation
- $u = -K\hat{x}$ Feedback

- \vec{x} state vector: BPM readings, ...

- \vec{u} knobs: dipoles' strength, ...

Kalman Filter vs. Matrix Optimization for CLIC



Work in Progress: Extended Kalman Filter + Neural Networks

- Limits of the KF:
 - assumes that the state of the process is governed by a linear difference equation
 - assumes that the errors affecting the state and the measurements are Gaussian
- \Rightarrow the response function and the errors are not linear!
 - Possible solution: Extended Kalman Filter + Neural Networks:
 - EKF:
 - works like the KF, but with a non-linear function as system response
 - NN:
 - provides the non-linear system response function to the EKF,
 - as neural networks can be trained on-line, their response improves dynamically.