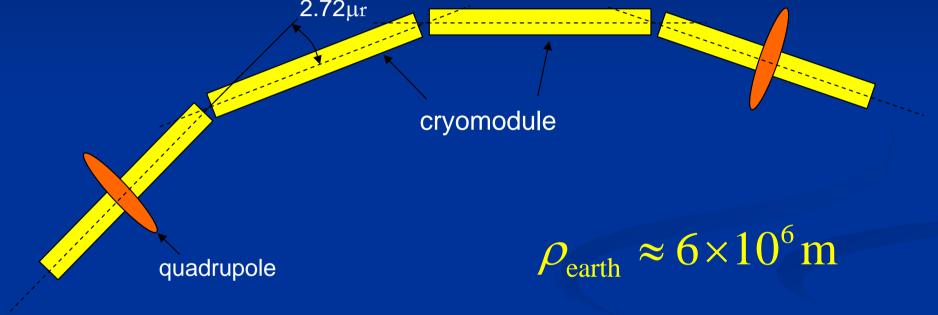
# Going round the bend

2<sup>nd</sup> ILC Workshop Snowmass August 16, 2005 (Updated September 27, 2005)

EUROTeV-Report-2005-017-1

### The Possibilities

### Laser-straight


The canonically studied (simulated) scenario Clearly leads to a relative deep tunnel (IR) \$\$ Earth curvature following Actually iso-gravitational potential following Possibly the cheapest solution Proposed for the TESLA TDR (DESY site) All options in between • Straight segmented options ( $\rightarrow$  PT's talk)

Extremes

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

# Following the Earth's Curvature



Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

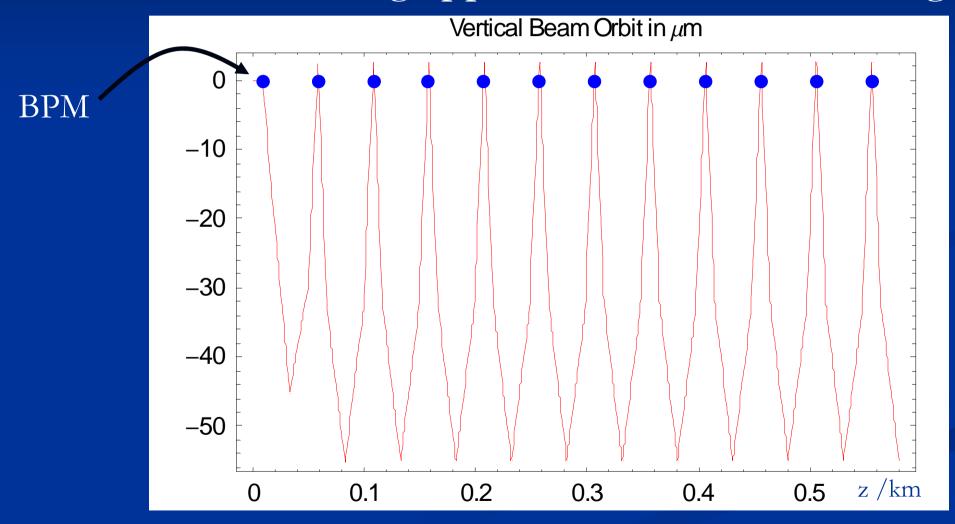
### What have I simulated?

- A simple linac lattice which follows the curvature of the earth (r = 6000 km)
- Curvature implemented by having a 2.7µrad vertical 'kink' between cryomodules.
- Vertical dipole corrector windings on quadrupoles used to follow geometry
  - 2.7 µrad/CM corresponds to ~450 µm systematic offset of the quadrupoles
- Impact on DFS performance studied
  - Comparison of same machine with and without Earth curvature following

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### **Chosen Linac Lattice**


- Very simple lattice taken from TESLA TDR
  60° FODO
- $\beta_{max} = 172 \text{ m constant beta lattice}$
- 6 cryomodules / fodo cell (cell length = 99.5m)
- 12 cavity cryomodule
- 1 TeV machine studied
  - 35 MV/m gradient ( $\phi_{RF} = 4.4^\circ$ )
  - 385 quadrupoles

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

## Steering the Earth

### One-to-one steering applied to zero BPM readings



Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### **Random Errors Studied**

300 µm

 $300 \mu rad$ 

300 µm

300 µrad

200 µm

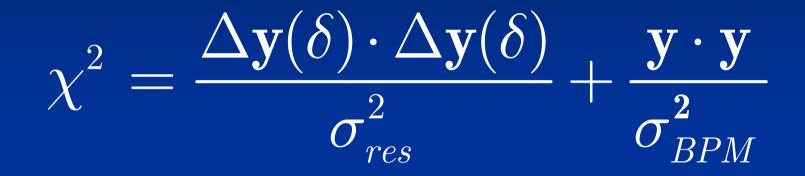
### RMS Errors (normally distributed):

- quad offsets:
- quad rolls
- cavity offsets:
- cavity tilts:
- BPM offsets:
- BPM resolution: 5 μm ??
- CM offsets:

200 µm

- TDR long. wakefield; trans. WF taken from Zagorodnov and Weiland, PAC2003.
- Initial uncorrelated energy spread taken as 2.8%

Same 1000 seeds used for laser-straight and curved geometries


Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

Snowmass, August 2005

- wrt CM axis

### **Canonical DFS reviewed**



 $\Delta \mathbf{y}(\delta) = \mathbf{y}(\delta) - \mathbf{y}(0) \qquad \begin{array}{l} \text{measured energy} \\ \text{difference orbit} \end{array}$  $\mathbf{y} = \mathbf{y}(0) \qquad \begin{array}{l} \text{Absolute measured} \\ \text{orbit} \end{array}$ 

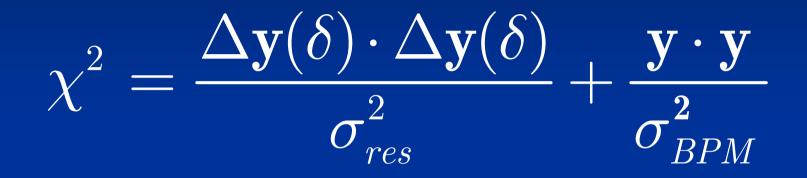
Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### The General Case

DFS (dispersion *free* steering) is the special case that has been studied:



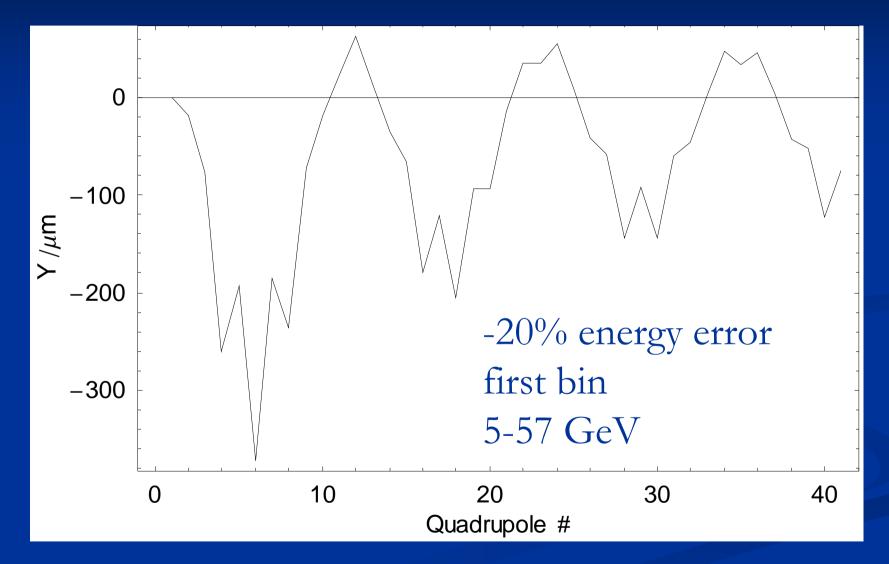

DS is the more general case, where we have finite dispersion:

$$\Delta \mathbf{y}(\delta) = \Delta \mathbf{y}_{design}(\delta)$$

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### **General DS**




# $\Delta \mathbf{y}(\delta) = \mathbf{y}(\delta) - \mathbf{y}(0) - \Delta \mathbf{y}_{design}(\delta)$ $\mathbf{y} = \mathbf{y}(0)$

Nick Walker (DESY)

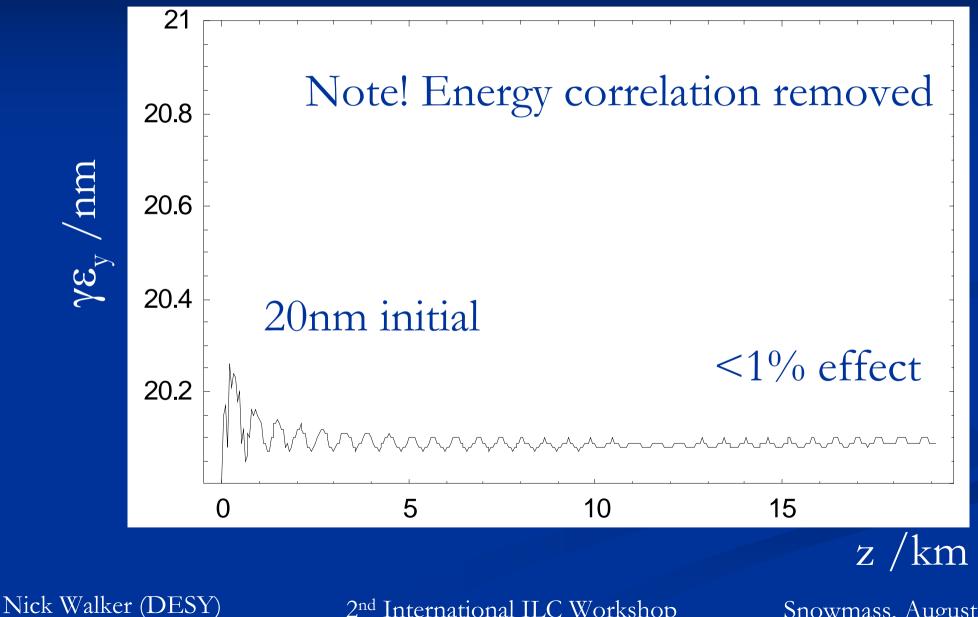
2<sup>nd</sup> International ILC Workshop

# Example of $\Delta y_{design}(\delta)$



Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop


### The Design Machine

- Radius of curvature is very large  $r \approx 6 \times 10^6 \text{ m}$ However, still enough to generate non-negligible vertical dispersion hence we need to *match* the dispersion to prevent emittance growth due to filamentation For model  $\beta = 172 \text{m} 60^\circ \text{ lattice} \Rightarrow \sim 1.1 \text{ mm}$ • at 5 GeV ( $\delta_{\text{RMS}} = 2.8\%$ )  $\gamma(\eta_u \delta_{RMS})^2 / \beta \approx 54$  nm
  - at 500 GeV ( $\delta_{\text{RMS}} = 0.05\%$ )  $\gamma(\eta_y \delta_{RMS})^2 / \beta \approx 0.54 \text{nm}$

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### **Design Emittance Growth**



2<sup>nd</sup> International ILC Workshop

### Simulation of BBA (DFS)

- Disclaimer: not the purpose of this study is not to evaluate the performance of DFS, but to try to quantify impact of linac geometry
  - same approximate DFS algorithm applied to both cases.
- Several approximations (cheats!) used in computer model
  - ease of implementation
  - speed (1000 seeds simulated)
- Full Blown simulations still required (for completeness)

2<sup>nd</sup> International ILC Workshop

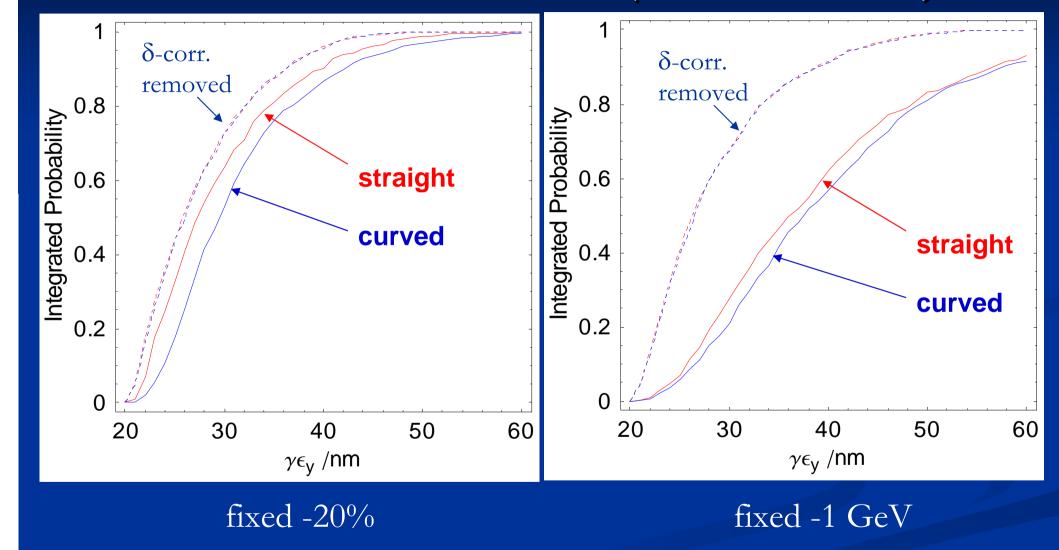
### **DFS** simulated

Sections of 40 quads (20 cells) BBA'd at a time
Sections overlap by 20 quads
Energy difference simply made by changing the initial beam energy

in 'real' life, would adjust linac amplitude / phase
impact of tilted cavities

2<sup>nd</sup> International ILC Workshop

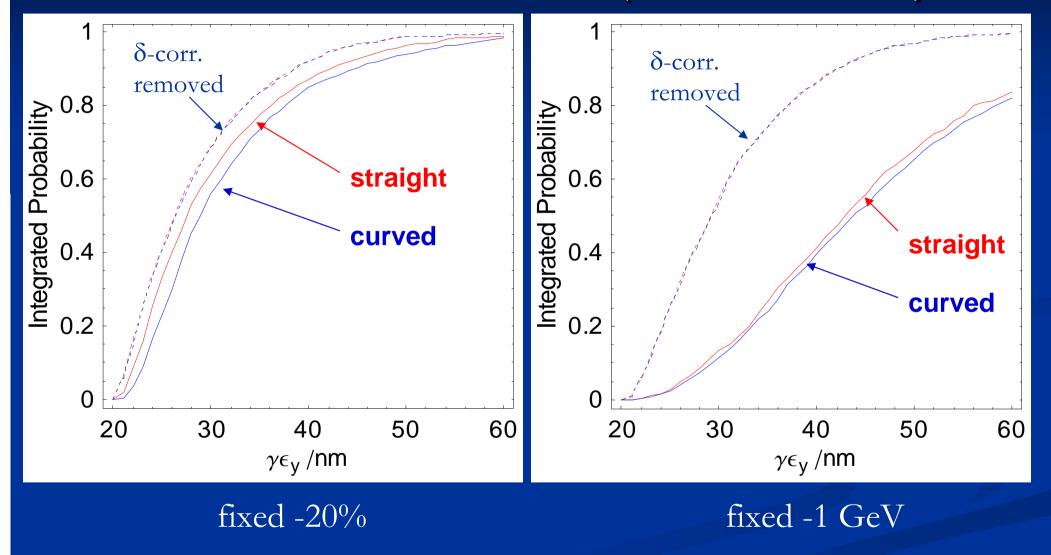
### **DFS** simulated


No jitter: assume launch conditions for each section are maintained (including for off-energy)
 Would be achieved by feedback / steering or by fitting (BPM res. critical)
 Two energy difference scenarios studied
 fixed -20% error

■ fixed -1 GeV error (-20% of 5GeV)

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop


### Results 250 GeV (1000 seeds)



Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### Results 500 GeV (1000 seeds)



Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

## Summary (1000 seeds)

Note: energy correlation removed

| ΔE         | % ≤30 nm               | 90%                 |
|------------|------------------------|---------------------|
| -20%       | 73%                    | 36 nm               |
| -1 GeV     | 68%                    | 39 nm               |
|            |                        |                     |
| ΔE         | % ≤30 nm               | 90%                 |
| ΔE<br>-20% | <b>% ≤30 nm</b><br>67% | <b>90%</b><br>39 nm |

no difference between straight and curved geometry

Nick Walker (DESY)

250 GeV

500 GeV

2<sup>nd</sup> International ILC Workshop

# **Remaining Questions**

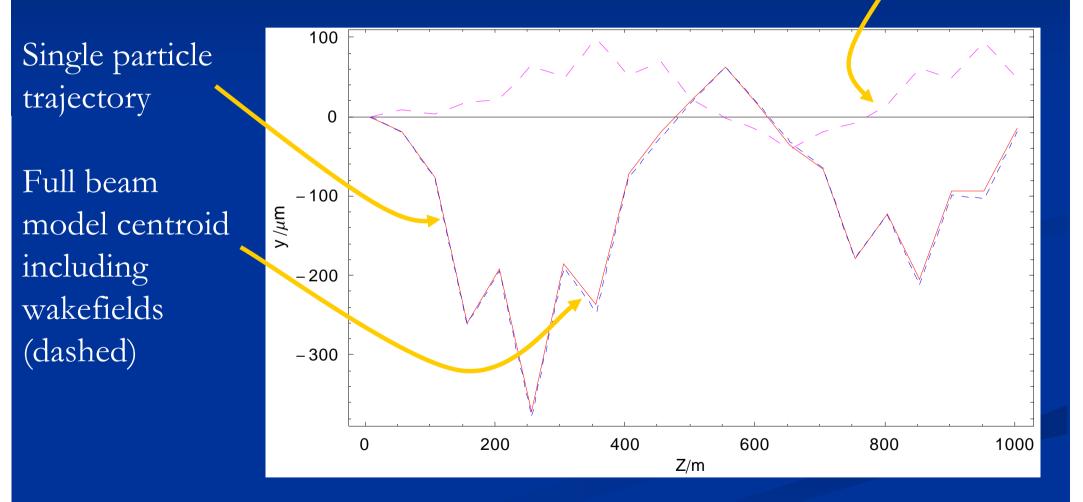
- Will the stated approximations (cheats) in the simulation impact the difference between straight and curved geometry?
  - Making simulation more 'realistic' will impact results
  - I don't (currently) see why one geometry will become more worse than the other
    - one potential exception: changing the energy
- More sophisticated (realistic) simulations to follow
- Understanding fundamental problems/limits with DFS probably more critical

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### **Potential Problems**

DFS no longer a nulling method
 Scale errors on BPMs (non-linearity) or energy error during measurement will result in residual unmatched dispersion

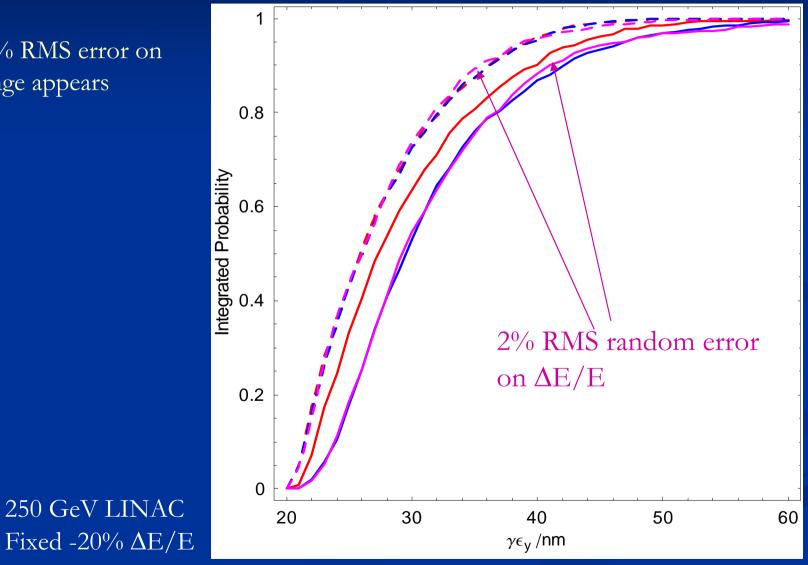

 Example: 10% scale error in measurement
 Δy<sub>max</sub>(ΔE/E=0.02)≈300µm ⇒ δη<sub>y</sub> ≈30µm/0.02=150µm
 Δε<sub>y</sub> = (150µm δ<sub>rms</sub>)<sup>2</sup>/β<sub>y</sub> ≈ 1 nm at E = 5 GeV

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### Impact of Wakefields on Measurement

 $\Delta \times 10$ 




Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### 2% RMS Error on $\Delta E/E$

Effect of 2% RMS error on energy change appears negligible



Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### General Questions Concerning DFS/FDS

Impact of systematic errors Modelling errors ■ How accurate is our lattice model (energy profile?) Measurement errors ■ How well do we know the energy / energy change How accurate are the BPMs • How well calibrated are the correctors Modelling the real world Realistic steering (feedback, iteration) ■ The need to iterate the correction (does it always converge)

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop

### Summary

- Simple constant- $\beta$  linac studied at 35MV/m
  - 250 GeV and 500 GeV machines simulated
- Curved geometry implemented as implied in the TDR
  - 2.6µrad kinks between cryomodules; simple use of quad corrector dipoles to steer beam.
- standard set of errors applied to 1000 machines
  - same error seeds used for straight and curved geometries
- Within limits of approximations used, no significant impact seen of curved geometry on emittance performance
  - there maybe other good reasons to have a straight machine, but linac beam dynamics does not seem to be one of them ③

Nick Walker (DESY)

2<sup>nd</sup> International ILC Workshop