Simulations of a Curved Linac

A. Latina

- Simulations were performed with PLACET
- Simulation procedure:
- The curved Linac was simulated by introducing bending elements along the lattice
- CLIC: 6267 elements $\times \Delta \mathrm{y}^{\prime} \simeq 0.35 \mu \mathrm{rad}$
- ILC: 319 elements $\times \Delta \mathrm{y}^{\prime} \simeq 5.24 \mu \mathrm{rad}$
- Subsequently, dipoles were inserted in order to compensate the bending
- Correction methods were applied (dispersion bumps)

Correction Methods Tested

- Simple Correction:
- One-to-One correction, each q-pole is moved to center the beam in a downstream BPM
- Dispersion Bumps at the beginning and at the end of the linac
- Minimization of the emittance by scan method...
- ...in the range:
- $\Delta x, y= \pm 1000 \mu \mathrm{~m}$
- $\Delta x^{\prime}, y^{\prime}= \pm 20 \mu \mathrm{rad}$

CLIC. Emittance Growth with One-to-One correction

- Curved Linac
- Emittance growth reduced by
- One-to-One Correction
- RF Alignment
- Final vertical emittance:

$$
\epsilon / \epsilon_{0} \simeq 3.2
$$

CLIC. Emittance Growth for a Curved Linac with Bending Dipoles

- Emittance growth reduced by
- One-to-One Correction
- Final vertical emittance:

$$
\epsilon / \epsilon_{0} \simeq 3
$$

CLIC. Emittance Growth for a Curved Linac with Bending Dipoles

- Emittance growth reduced by dispersion bumps
- Final vertical emittance:

$$
\epsilon / \epsilon_{0}=1.22
$$

ILC. Emittance Growth for a Curved Linac with Bending Dipoles

- Emittance growth reduced by dispersion bumps
- Final vertical emittance:

$$
\epsilon / \epsilon_{0}=0.04
$$

