Simulations of a Curved Linac

A. Latina

- Simulations were performed with PLACET
- Simulation procedure:
 - The curved Linac was simulated by introducing bending elements along the lattice
 - **CLIC**: 6267 elements \times $\Delta {
 m y}' \simeq$ 0.35 $\mu {
 m rad}$
 - **ILC**: 319 elements \times Δ y' \simeq 5.24 μ rad
 - Subsequently, dipoles were inserted in order to compensate the bending
 - Correction methods were applied (dispersion bumps)

Correction Methods Tested

- Simple Correction:
 - One-to-One correction, each q-pole is moved to center the beam in a downstream BPM
- Dispersion Bumps at the beginning and at the end of the linac
 - Minimization of the emittance by scan method...
 - ...in the range:
 - $\Delta x, y = \pm 1000~\mu\mathrm{m}$
 - $\Delta x', y' = \pm 20~\mu \mathrm{rad}$

CLIC. Emittance Growth with One-to-One correction

- Curved Linac
- Emittance growth reduced by
 - One-to-One Correction
 - RF Alignment
- Final vertical emittance:

$$\epsilon/\epsilon_0 \simeq 3.2$$

CLIC. Emittance Growth for a Curved Linac with Bending Dipoles

- Emittance growth reduced by
 - One-to-One Correction
- Final vertical emittance:

$$\epsilon/\epsilon_0 \simeq 3$$

CLIC. Emittance Growth for a Curved Linac with Bending Dipoles

- Emittance growth reduced by dispersion bumps
- Final vertical emittance:

$$\epsilon/\epsilon_0 = 1.22$$

ILC. Emittance Growth for a Curved Linac with Bending Dipoles

- Emittance growth reduced by dispersion bumps
- Final vertical emittance:

$$\epsilon/\epsilon_0 = 0.04$$