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averaged 
neutrino

mass

  Need: low endpoint energy ⇒ Tritium 3H, (187Re)
very high energy resolution &

   very high luminosity & ⇒ MAC-E-Filter          
very low background                 (or bolometer for 187Re)

Direct determination of m(ν
e
) 

from β  decay

 

β decay: (A,Z) → (A,Z+1)+  +  e-  +ν
e

}

β  electron energy spectrum:

dN/dE = K  F(E,Z)  p  Etot  (E0-Ee)  Σ |U
ei
|2  (E0-Ee)2 – m(ν i)2 

(modified by electronic final states, recoil corrections, radiative corrections)
 

Mainz, Troitzk 

experiments:

m() < 2 eV

e.g.:  Otten & 

Weinheimer, 

  Rep. Prog. Phys. 71 

(2008) 086201
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Comparison of the different 
approaches to the neutrino mass

  ⇒ absolute scale/cosmological relevant neutrino mass in the lab by single   decay  

Direct kinematic measurement: m2(ν
e
)  =   Σ |U

ei
2| m2(ν

i
) (incoherent)

Neutrinolesss double  decay: m(ν)  = | Σ |U
ei

2| eiα(i) m(ν
i
)|   (coherent)

if no other particle is exchanged (e.g. R-violating SUSY)
problems with uncertainty of nuclear matrix elements

  
m

(
e)

  
 m


  

 [e
V
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uncertainty due
to unknowns

of the neutrino
mixing, essentially

the Majorana-phases
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Principle of the MAC-E-Filter

    Magnetic Adiabatic Collimation + Electrostatic Filter
(A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

● Two supercond. solenoids
compose magnetic
guiding field

● adiabatic transformation:
    µ = E⊥/B = const.

⇒ parallel e- beam
● Energy analysis by

electrostat. retarding field
∆E = E⋅ B

min
/B

max
 

= 0.93 eV (KATRIN)

 ⇒sharp integrating transmission function without tails 
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  70 m 

}∅1 0 m

Physics Aim: m(
e
) sensitivity of 0.2 eV 

● higher energy resolution: ∆E ≈  1eV
since E/∆E ~ A

spectrometer
    ⇒ larger spectrometer 

● relevant region below endpoint becomes smaller
even less rate dN/dt ~ A

source 
~ A

spectrometer 
⇒ larger spectrometer

● small systematics ⇒ windowless gaseous tritium source
● much longer measurement time:         100 d → 1000 d

is being set up at the Forschungszentrum Karlsruhe

(Scientific Report FZKA 7090)

windowless gaseous

molecular tritium source

tritium
retention

system

pre
spectro-

meter

main spectrometer detector

The Karlsruhe Tritium Neutrino 
experiment KATRIN
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Molecular Windowless Gaseous 
Tritium Source WGTS

WGTS: tub in long superconducting solenoids
∅ 9cm, length: 10m, T = 30 K

Tritium recirculation (and purification)
p

inj
 = 0.003 mbar, q

inj
 = 4.7Ci/s

allows to measure with near to 
maximum count rate using 

ρd = 5 ⋅  1017/cm2

with small systematics

T
2
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Molecular Windowless Gaseous 
Tritium Source WGTS

conzept:

2-Phasen Neon

(sied. Flüssigkeit)

2-phase 
Neon

beam pipe

Cu Tritium

heaters.c.
Helium
vessel

Kr

Conceptional design
2 phase Neon cooling with 2 phase Neon cooling with 

operating temperature: 27–28 K operating temperature: 27–28 K 

• spatial (homogeneity): ±  0.1% 

• time     (stability/hour):  ±  0.1% 

∆ T ≤ ± 30 mK !

WGTS has 

been ordered in 

Dec. 2004

Kn<<1:
Hydrodynamic regime 

             Kn~1: transitional 
flow

   Kn>>1: Free molecular regime 
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vacuum vessels DPS1

M1,2,3 coil winding finished

 | G. Drexlin | v2008
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Transport and differential 
& cryo pumping sections

Molecular windowless
gaseous tritium source

< 2.5 10-14 mbar l/s

T2-injection 1.8 mbar l/s (STP)

= 1.7*1011 Bq/s =  40 g/d

Differential
pumping

  10-7 mbar l/s

  ⇒ adiabatic electron guiding & T2 reduction factor of ~1014   

Cryogenic
pumping

with Argon snow
at LHe temperatures

(successfully tested with the 
TRAP experiment)
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10 10 e -/s

10 3 e -/s

10 -2 - 10 2 e -/s

Pre and main spectrometer

Main spectrometer:

● ∅10m, length 24m
⇒ large energy resolution: ∆E = 0.93 eV
⇒ high luminosity: L = A

Seff
  ∆Ω/4π = A

analyse
 ∆E/(2E) = 20 cm2

● ultrahigh vacuum requirements (background) p < 10-11  mbar (EHV)
● „simple“ construction: vacuum vessel at HV + „massless“ screening electrode

Pre spectrometer

● Transmission of electron with highest energy only 
(10-7 part in last 100 eV)

⇒ Reduction of scattering probaility in main spectrometer
⇒ Reduction of background

● only moderate energy resolution required: ∆E = 80 eV

● test of new ideas (EHV, shape of electrodes, avoid and remove of trapped particles, ...)
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(magn. field of 3 - 6 T, active veto shield, post-accel. mode)

A = 63 cm2

Detector Setup

DETECTOR

ELECTRONICS

FLUX TUBE

MAGNET

GATE VALVE

VETO SHIELD

 Si-Pin diode
 Detection of transmitted β-decay electrons (mHz to kHz)
 Low background for endpoint investigation
 High energy resolution ΔE < 1 keV
 12 rings with 30° segmentation + 4 fold center = 148 pixels

record azimuthal and radial profile of flux tube
minimize background
investigate systematic effects
compensate field inhomogeneity in analyzing plane
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-40                   -30                   -20                   -10                      0                   +10

distance from analysing plane [m]

B
-field [T

]

1:20000

Electromagnetic design: 
magnetic fields

aircoils:
axial field shaping + earth field compensation

E = E  B
min

 / B
max

 

   = E 1 / 20000
   = 0.93 eV
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Electromagnetic design tests
at the pre spectrometer

ground electrodes

pre spec detector

s

2-dim scanning e-gun

pre spectrometer

new electrode to 
avoid Penning trap

transmission function
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Main Spectrometer – Transport
to Forschungszentrum Karlsruhe

400 km

8800 kmLeopoldshafen, 25.11.06
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Tritium Laboratory KarlsruheTritium Laboratory Karlsruhespectrometerspectrometer
  hallhall

supportsupport
buildingsbuildings main spectrometermain spectrometer

KATRIN`s location at 
Forschungszentrum Karlsruhe
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Installation of heating/cooling system
and first out-baking at 350 oC

heating/cooling pipes & insulation thermal insulation

After out-baking (with only 6 TMPs):
a) p = 5 * 10-10 mbar,

(but pumping speed will still be increased 
by 2 orders of magnitude by NEGs)

b) out-gasing rate is about KATRIN´s 
design value of  
q<10-12 mbar l/s cm2

@ 170 oC
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Sensitivity requirements

1) Huge statistics: optimized source &
large spectrometer

2) Low background: Mainz experiment: 
most background from spectrometer

but KATRIN spectrometer is much bigger!
⇒ need something new !

3) Systematic uncertainties: 
need to be very small !
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Secondary electrons from wall/electrode

by cosmic rays, environmental radioactivity, ...

wire electrode on slightly more negative potential

Mainz V (2004)
New record !April 04

KATRIN pre spectrometer

First realisation:
     Mainz III

Background reduction: shielding
by „massless“ wire electrode

•
•
•
•
•

e-

U-∆U    U

µ

1.6 mHz

total background rate
2.8 mHz

Dipl. thesis B. Ostrick (U Mainz, 2002),
PhD thesis B. Flatt (U Mainz, 2004)

Background suppression successfully tested 
at the Mainz MAC-E filter:
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Concept for KATRIN: 
690 m² surface: 2-layer wire modules

Two layers:
- to increase background shielding

- to increase electrical shielding

- to allow mechanical precision

Wire electrode system of KATRIN 
main spectrometer (A=690 m2, V=1240 m3): 

    248 modules, 23120 wires, 46240 ceramics 

Technical requirements:
● modules have to withstand bake-out at 350°C

● module design needs to be compatible 
with UHV requirements (10-11 mbar)

● exact relative wire position (Δx = 200 m)

● non-magnetic, non-radioactive, ...

3 x 20
large cone

1 x 10 + 1 x 4
small cone

5 x 20
cylinder
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Wire electrode design and 
mass production at Münster

C-sh
aped ro

d

comb 1. wire layer
Ø = 0.3 mm

2. wire layer 
Ø = 0.2 mm

7
0

 m
m 25 mm

@ Münster University@ Münster University

3-dim coordinate
measurement setup

in Münster clean-room

1,
80

 m
2-dim laser sensorhighres camera
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Electrode module installation:
a flexible scaffold inside „cleanroom“
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KATRIN

Mainz

□ m = 0.5 eV
○ m = 0.35 eV
● m = 0 eV

KATRIN´s statistical uncertainty

reference:
optimised measuring point distribution
expected background of 10mHz

example of KATRIN simulation & fit
(last 25eV below endpoint, reference):

further reduced background to 1mHz
is this possible ?
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A) As smaller m(ν) as smaller the region of interest below endpoint E
0

B) Any unaccounted variance σ 2 leads to negative shift of mν
2: ∆ mν

2 = -2 σ 2

1. inelastic scatterings of ß´s inside WGTS  

   - dedicated e-gun measurements, unfolding of response fct.

2. fluctuations of WGTS column density (required < 0.1%)
    -  rear detector, Laser-Raman spectroscopy, T=30K stabilisation, 
      e-gun measurements

3. transmission function
    -  spatial resolved e-gun measurements
 

4. WGTS charging due to remaining ions (MC: φ  < 20mV)
    - inject low energy meV electrons from rear side, 
     diagnostic tools available

 5. final state distribution
     - reliable quantum chem. calculations

6. HV stability of retarding potential on ~3ppm level required
    - precision HV divider (PTB), monitor spectrometer beamline  

Systematic uncertainties

  a few
contributions

with each:
∆mν

2
  
≤  0.007 eV2}
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3ppm long term stability
of the retarding HV

● Measure HV by precision HV divider

● Lock retarding HV by measuring 

energetically well-defined electron line with monitor spectrometer

pre
spectrometer

main spectrometer

tritium source
or alternately

calibration
source

detector

HV-supply

precision 
HV divider
with PTB

continuously:
83mKr conversion 
electron source:

e.g. condensed 83mKr
source 
Münster/Bonn/Mainz 

monitor spectrometer 
= modified Mainz spec.: 

∆E=5eV → 1 eV

KATRIN's sensitivity

- large statistics

- high energy resolution

- low background

- small systematic uncertainties

⇒  sensitivity on m(ν
e
) 

   ≈  0.20 eV/c2

(about equal contribution from stat. and syst. uncertainties)
(90% C.L. upper limit for m(ν

e
) = 0)

m(ν
e
) = 0.30eV observable with 3σ

m(ν
e
) = 0.35eV observable with 5σ

⇒ KATRIN will improve the sensitivity by 1 order of magnitude

will check the whole cosmological relevant mass range

will detect degenerate neutrinos (if they are degen.)
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Relic neutrino detection with KATRIN


e
 + 3H  3He+ + e- has no threshold ideal reaction to detect relic n:eutrinos

(A.G. Cocco, G. Mangano and M. Messina, hep-ph/0703075)

Signature: monoenergetic electron at endpoint (at E = E
0  

+ m)

Need to distinguish from normal  electrons

and from experimental background
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Relic neutrino detection with KATRIN

Capture rate of relic neutrinos for 100g T
2  

(A.G. Cocco, G. Mangano and M. Messina, 
hep-ph/0703075): 

100 g tritium corresponds to 1*1025 T
2
 molecules, they yield about 10 events/year !

But KATRIN has a column density of 5*1017 molecules/cm2 and 

a cross section of A= 53 cm2                   2.65 * 1019 T2 molecules

Taken into account the acceptance of the KATRIN spectrometer there are effectively
5 * 1018 T

2
 molecules, which are 2 * 106 less than 100 g!

Expected rate is more like 5 * 10-6 events/year ! (completely hopeless)
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Relic neutrino detection with KATRIN

Expected rate is more like 5 * 10-6 events/year ! (completely hopeless, if not

much higher relic neutrino density
or

non-standard cross section)
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Optimal „Q-value“ E
0
:

count rate in last 10eV below endpoint E
0

total count rate per atom:
Γ ∼  E

0
4 (E

0
5) for low (high) E

0

(for super-allowed decay)

relative fraction in last
10 eV below E

0

total count rate per atom
in last 10 eV below E

0

 ⇒ count rate per atom in last 10 eV is nearly independent on Q-value E
0
:

choice of β-emitter does not help much for relic  detection !
systematics (e.g. low Z), 

Usually the choice depends on: feasibility (low energy for achieving ∆E)
background by low energy electrons
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Status & Outlook

KATRIN is a direct neutrino mass experiment
for particle and astroparticle physics with 0.2 eV sensitivity

complementary to 0 searches and cosmological analyses 

2008/09 - mounting of inner electrode, source demonstrator on-site, 
 - start of el. mag. and background test of pre and main spectrometer  

2011/12 - commissioning of WGTS, tritium loops, system integration,
- study of systematic effects 
- first test runs with tritium
- regular data taking for 5-6 years (3 full-beam-years) 

KATRIN is at present the ultimate tritium experiments, 
no hope to detect “standard” relic neutrinos    

KATRIN collaboration of 2007
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